ترغب بنشر مسار تعليمي؟ اضغط هنا

Classifying Seyfert galaxies with deep learning

122   0   0.0 ( 0 )
 نشر من قبل Yen Chen Chen
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yen Chen Chen




اسأل ChatGPT حول البحث

Traditional classification for subclass of the Seyfert galaxies is visual inspection or using a quantity defined as a flux ratio between the Balmer line and forbidden line. One algorithm of deep learning is Convolution Neural Network (CNN) and has shown successful classification results. We building a 1-dimension CNN model to distinguish Seyfert 1.9 spectra from Seyfert 2 galaxies. We find our model can recognize Seyfert 1.9 and Seyfert 2 spectra with an accuracy over 80% and pick out an additional Seyfert 1.9 sample which was missed by visual inspection. We use the new Seyfert 1.9 sample to improve performance of our model and obtain a 91% precision of Seyfert 1.9. These results indicate our model can pick out Seyfert 1.9 spectra among Seyfert 2 spectra. We decompose H{alpha} emission line of our Seyfert 1.9 galaxies by fitting 2 Gaussian components and derive line width and flux. We find velocity distribution of broad H{alpha} component of the new Seyfert 1.9 sample has an extending tail toward the higher end and luminosity of the new Seyfert 1.9 sample is slightly weaker than the original Seyfert 1.9 sample. This result indicates that our model can pick out the sources that have relatively weak broad H{alpha} component. Besides, we check distributions of the host galaxy morphology of our Seyfert 1.9 samples and find the distribution of the host galaxy morphology is dominant by large bulge galaxy. In the end, we present an online catalog of 1297 Seyfert 1.9 galaxies with measurement of H{alpha} emission line.



قيم البحث

اقرأ أيضاً

There are several supervised machine learning methods used for the application of automated morphological classification of galaxies; however, there has not yet been a clear comparison of these different methods using imaging data, or a investigation for maximising their effectiveness. We carry out a comparison between several common machine learning methods for galaxy classification (Convolutional Neural Network (CNN), K-nearest neighbour, Logistic Regression, Support Vector Machine, Random Forest, and Neural Networks) by using Dark Energy Survey (DES) data combined with visual classifications from the Galaxy Zoo 1 project (GZ1). Our goal is to determine the optimal machine learning methods when using imaging data for galaxy classification. We show that CNN is the most successful method of these ten methods in our study. Using a sample of $sim$2,800 galaxies with visual classification from GZ1, we reach an accuracy of $sim$0.99 for the morphological classification of Ellipticals and Spirals. The further investigation of the galaxies that have a different ML and visual classification but with high predicted probabilities in our CNN usually reveals an the incorrect classification provided by GZ1. We further find the galaxies having a low probability of being either spirals or ellipticals are visually Lenticulars (S0), demonstrating that supervised learning is able to rediscover that this class of galaxy is distinct from both Es and Spirals. We confirm that $sim$2.5% galaxies are misclassified by GZ1 in our study. After correcting these galaxies labels, we improve our CNN performance to an average accuracy of over 0.99 (accuracy of 0.994 is our best result).
The new generation of deep photometric surveys requires unprecedentedly precise shape and photometry measurements of billions of galaxies to achieve their main science goals. At such depths, one major limiting factor is the blending of galaxies due t o line-of-sight projection, with an expected fraction of blended galaxies of up to 50%. Current deblending approaches are in most cases either too slow or not accurate enough to reach the level of requirements. This work explores the use of deep neural networks to estimate the photometry of blended pairs of galaxies in monochrome space images, similar to the ones that will be delivered by the Euclid space telescope. Using a clean sample of isolated galaxies from the CANDELS survey, we artificially blend them and train two different network models to recover the photometry of the two galaxies. We show that our approach can recover the original photometry of the galaxies before being blended with $sim$7% accuracy without any human intervention and without any assumption on the galaxy shape. This represents an improvement of at least a factor of 4 compared to the classical SExtractor approach. We also show that forcing the network to simultaneously estimate a binary segmentation map results in a slightly improved photometry. All data products and codes will be made public to ease the comparison with other approaches on a common data set.
Classifying the morphologies of galaxies is an important step in understanding their physical properties and evolutionary histories. The advent of large-scale surveys has hastened the need to develop techniques for automated morphological classificat ion. We train and test several convolutional neural network architectures to classify the morphologies of galaxies in both a 3-class (elliptical, lenticular, spiral) and 4-class (+irregular/miscellaneous) schema with a dataset of 14034 visually-classified SDSS images. We develop a new CNN architecture that outperforms existing models in both 3 and 4-way classification, with overall classification accuracies of 83% and 81% respectively. We also compare the accuracies of 2-way / binary classifications between all four classes, showing that ellipticals and spirals are most easily distinguished (>98% accuracy), while spirals and irregulars are hardest to differentiate (78% accuracy). Through an analysis of all classified samples, we find tentative evidence that misclassifications are physically meaningful, with lenticulars misclassified as ellipticals tending to be more massive, among other trends. We further combine our binary CNN classifiers to perform a hierarchical classification of samples, obtaining comparable accuracies (81%) to the direct 3-class CNN, but considerably worse accuracies in the 4-way case (65%). As an additional verification, we apply our networks to a small sample of Galaxy Zoo images, obtaining accuracies of 92%, 82% and 77% for the binary, 3-way and 4-way classifications respectively.
We study the utility of broad-band colours in the SkyMapper Southern Survey for selecting Seyfert galaxies at low luminosity. We find that the $u-v$ index, built from the ultraviolet $u$ and violet $v$ filters, separates normal galaxies, starburst ga laxies and type-1 AGN. This $u-v$ index is not sensitive to age or metallicity in a stellar population but is instead a quenching-and-bursting indicator in galaxies and detects power-law continua in type-1 AGN. Using over 25,000 galaxies at $z<0.1$ from 6dFGS, we find a selection cut based on $u-v$ and central $u$ band brightness that identifies type-1 AGN. By eyeballing 6dFGS spectra we classify new Seyfert galaxies of type 1 to 1.8. Our sample includes eight known Changing-Look AGN, two of which show such strong variability that they move across the selection cut during the five years of SkyMapper observations in DR3, along mixing sequences of nuclear and host galaxy light. We identify 46 Changing-Look AGN candidates in our sample, one of which has been reported as a type-IIn supernova. We show that this transient persists for at least five years and marks a flare in a Seyfert-1 period of a new Changing-Look AGN.
Metal absorption line systems in distant quasar spectra probe of the history of gas content in the universe. The MgII $lambda lambda$ 2796, 2803 doublet is one of the most important absorption lines since it is a proxy of the star formation rate and a tracer of the cold gas associated with high redshift galaxies. Machine learning algorithms have been used to detect absorption lines systems in large sky surveys, such as Principle Component Analysis (PCA), Gaussian Process (GP) and decision trees. A very powerful algorithm in the field of machine learning called deep neural networks, or deep learning is a new structure of neural network that automatically extracts semantic features from raw data and represents them at a high level. In this paper, we apply a deep convolutional neural network for absorption line detection. We use the previously published DR7 MgII catalog (Zhu et al. 2013) as the training and validation sample and the DR12 MgII catalog as the test set. Our deep learning algorithm is capable of detecting MgII absorption lines with an accuracy of $sim$94% . It takes only $sim 9$ seconds to analyze $sim$ 50000 quasar spectra with our deep neural network, which is ten thousand times faster than traditional methods, while preserving high accuracy with little human interference. Our study shows that Mg II absorption line detection accuracy of a deep neutral network model strongly depends on the filter size in the filter layer of the neural network, and the best results are obtained when the filter size closely matches the absorption feature size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا