ﻻ يوجد ملخص باللغة العربية
When analyzing the galaxy bispectrum measured from spectroscopic surveys, it is imperative to account for the effects of non-uniform survey geometry. Conventionally, this is done by convolving the theory model with the the window function; however, the computational expense of this prohibits full exploration of the bispectrum likelihood. In this work, we provide a new class of estimators for the unwindowed bispectrum; a quantity that can be straightforwardly compared to theory. This builds upon the work of Philcox (2021) for the power spectrum, and comprises two parts (both obtained from an Edgeworth expansion): a cubic estimator applied to the data, and a Fisher matrix, which deconvolves the bispectrum components. In the limit of weak non-Gaussianity, the estimator is minimum-variance; furthermore, we give an alternate form based on FKP weights that is close-to-optimal and easy to compute. As a demonstration, we measure the binned bispectrum monopole of a suite of simulations both using conventional estimators and our unwindowed equivalents. Computation times are comparable, except that the unwindowed approach requires a Fisher matrix, computable in an additional $mathcal{O}(100)$ CPU-hours. Our estimator may be straightforwardly extended to measure redshift-space distortions and the components of the bispectrum in arbitrary separable bases. The techniques of this work will allow the bispectrum to straightforwardly included in the cosmological analysis of current and upcoming survey data.
Clustering of large-scale structure provides significant cosmological information through the power spectrum of density perturbations. Additional information can be gained from higher-order statistics like the bispectrum, especially to break the dege
This paper presents the characterization of the in-flight beams, the beam window functions and the associated uncertainties for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is necessary for determining the transfer functi
This paper presents the characterization of the in-flight beams, the beam window functions, and the associated uncertainties for the Planck Low Frequency Instrument (LFI). The structure of the paper is similar to that presented in the 2013 Planck rel
The apparent anisotropies of the galaxy clustering in observable redshift space provide a unique opportunity to simultaneously probe cosmic expansion and gravity on cosmological scales via the Alcock--Paczynski effect and redshift-space distortions.
High-precision constraints on primordial non-Gaussianity (PNG) will significantly improve our understanding of the physics of the early universe. Among all the subtleties in using large scale structure observables to constrain PNG, accounting for rel