ﻻ يوجد ملخص باللغة العربية
We find that sub-GeV neutrino portal bosons that carry lepton number can condense inside a proto-neutron star (newly born neutron star). These bosons are produced copiously and form a Bose-Einstein condensate for a range of as yet unconstrained coupling strengths to neutrinos. The condensate is a lepton number superfluid with transport properties that differ dramatically from those encountered in ordinary dense baryonic matter. We discuss how this phase could alter the evolution of proto-neutron stars and comment on the implications for neutrino signals and nucleosynthesis.
We perform general relativistic one-dimensional supernova (SN) simulations to identify observable signatures of enhanced axion emission from the pion induced reaction $pi^- + p rightarrow n + a$ inside a newly born proto-neutron star (PNS). We focus
We analyze damping of oscillations of general relativistic superfluid neutron stars. To this aim we extend the method of decoupling of superfluid and normal oscillation modes first suggested in [Gusakov & Kantor PRD 83, 081304(R) (2011)]. All calcula
We demonstrate that the observation of neutron stars with masses greater than one solar mass places severe demands on any exotic neutron decay mode that could explain the discrepancy between beam and bottle measurements of the neutron lifetime. If th
We study the probability for nucleation of quark matter droplets in the dense cold cores of old neutron stars induced by the presence of a self-annihilating dark matter component, $chi$. Using a parameterized form of the equation of state for hadroni
A promising probe to unmask particle dark matter is to observe its effect on neutron stars, the prospects of which depend critically on whether captured dark matter thermalizes in a timely manner with the stellar core via repeated scattering with the