ترغب بنشر مسار تعليمي؟ اضغط هنا

Object Tracking and Geo-localization from Street Images

194   0   0.0 ( 0 )
 نشر من قبل Daniel Wilson
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Geo-localizing static objects from street images is challenging but also very important for road asset mapping and autonomous driving. In this paper we present a two-stage framework that detects and geolocalizes traffic signs from low frame rate street videos. Our proposed system uses a modified version of RetinaNet (GPS-RetinaNet), which predicts a positional offset for each sign relative to the camera, in addition to performing the standard classification and bounding box regression. Candidate sign detections from GPS-RetinaNet are condensed into geolocalized signs by our custom tracker, which consists of a learned metric network and a variant of the Hungarian Algorithm. Our metric network estimates the similarity between pairs of detections, then the Hungarian Algorithm matches detections across images using the similarity scores provided by the metric network. Our models were trained using an updated version of the ARTS dataset, which contains 25,544 images and 47.589 sign annotations ~cite{arts}. The proposed dataset covers a diverse set of environments gathered from a broad selection of roads. Each annotaiton contains a sign class label, its geospatial location, an assembly label, a side of road indicator, and unique identifiers that aid in the evaluation. This dataset will support future progress in the field, and the proposed system demonstrates how to take advantage of some of the unique characteristics of a realistic geolocalization dataset.



قيم البحث

اقرأ أيضاً

Comprehensive understanding of dynamic scenes is a critical prerequisite for intelligent robots to autonomously operate in their environment. Research in this domain, which encompasses diverse perception problems, has primarily been focused on addres sing specific tasks individually rather than modeling the ability to understand dynamic scenes holistically. In this paper, we introduce a novel perception task denoted as multi-object panoptic tracking (MOPT), which unifies the conventionally disjoint tasks of semantic segmentation, instance segmentation, and multi-object tracking. MOPT allows for exploiting pixel-level semantic information of thing and stuff classes, temporal coherence, and pixel-level associations over time, for the mutual benefit of each of the individual sub-problems. To facilitate quantitative evaluations of MOPT in a unified manner, we propose the soft panoptic tracking quality (sPTQ) metric. As a first step towards addressing this task, we propose the novel PanopticTrackNet architecture that builds upon the state-of-the-art top-down panoptic segmentation network EfficientPS by adding a new tracking head to simultaneously learn all sub-tasks in an end-to-end manner. Additionally, we present several strong baselines that combine predictions from state-of-the-art panoptic segmentation and multi-object tracking models for comparison. We present extensive quantitative and qualitative evaluations of both vision-based and LiDAR-based MOPT that demonstrate encouraging results.
Camera geo-localization from a monocular video is a fundamental task for video analysis and autonomous navigation. Although 3D reconstruction is a key technique to obtain camera poses, monocular 3D reconstruction in a large environment tends to resul t in the accumulation of errors in rotation, translation, and especially in scale: a problem known as scale drift. To overcome these errors, we propose a novel framework that integrates incremental structure from motion (SfM) and a scale drift correction method utilizing geo-tagged images, such as those provided by Google Street View. Our correction method begins by obtaining sparse 6-DoF correspondences between the reconstructed 3D map coordinate system and the world coordinate system, by using geo-tagged images. Then, it corrects scale drift by applying pose graph optimization over Sim(3) constraints and bundle adjustment. Experimental evaluations on large-scale datasets show that the proposed framework not only sufficiently corrects scale drift, but also achieves accurate geo-localization in a kilometer-scale environment.
We introduce an approach for updating older tree inventories with geographic coordinates using street-level panorama images and a global optimization framework for tree instance matching. Geolocations of trees in inventories until the early 2000s whe re recorded using street addresses whereas newer inventories use GPS. Our method retrofits older inventories with geographic coordinates to allow connecting them with newer inventories to facilitate long-term studies on tree mortality etc. What makes this problem challenging is the different number of trees per street address, the heterogeneous appearance of different tree instances in the images, ambiguous tree positions if viewed from multiple images and occlusions. To solve this assignment problem, we (i) detect trees in Google street-view panoramas using deep learning, (ii) combine multi-view detections per tree into a single representation, (iii) and match detected trees with given trees per street address with a global optimization approach. Experiments for > 50000 trees in 5 cities in California, USA, show that we are able to assign geographic coordinates to 38 % of the street trees, which is a good starting point for long-term studies on the ecosystem services value of street trees at large scale.
Attributes of sound inherent to objects can provide valuable cues to learn rich representations for object detection and tracking. Furthermore, the co-occurrence of audiovisual events in videos can be exploited to localize objects over the image fiel d by solely monitoring the sound in the environment. Thus far, this has only been feasible in scenarios where the camera is static and for single object detection. Moreover, the robustness of these methods has been limited as they primarily rely on RGB images which are highly susceptible to illumination and weather changes. In this work, we present the novel self-supervised MM-DistillNet framework consisting of multiple teachers that leverage diverse modalities including RGB, depth and thermal images, to simultaneously exploit complementary cues and distill knowledge into a single audio student network. We propose the new MTA loss function that facilitates the distillation of information from multimodal teachers in a self-supervised manner. Additionally, we propose a novel self-supervised pretext task for the audio student that enables us to not rely on labor-intensive manual annotations. We introduce a large-scale multimodal dataset with over 113,000 time-synchronized frames of RGB, depth, thermal, and audio modalities. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods while being able to detect multiple objects using only sound during inference and even while moving.
Cross-view geo-localization is to spot images of the same geographic target from different platforms, e.g., drone-view cameras and satellites. It is challenging in the large visual appearance changes caused by extreme viewpoint variations. Existing m ethods usually concentrate on mining the fine-grained feature of the geographic target in the image center, but underestimate the contextual information in neighbor areas. In this work, we argue that neighbor areas can be leveraged as auxiliary information, enriching discriminative clues for geolocalization. Specifically, we introduce a simple and effective deep neural network, called Local Pattern Network (LPN), to take advantage of contextual information in an end-to-end manner. Without using extra part estimators, LPN adopts a square-ring feature partition strategy, which provides the attention according to the distance to the image center. It eases the part matching and enables the part-wise representation learning. Owing to the square-ring partition design, the proposed LPN has good scalability to rotation variations and achieves competitive results on three prevailing benchmarks, i.e., University-1652, CVUSA and CVACT. Besides, we also show the proposed LPN can be easily embedded into other frameworks to further boost performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا