ﻻ يوجد ملخص باللغة العربية
Dance and music typically go hand in hand. The complexities in dance, music, and their synchronisation make them fascinating to study from a computational creativity perspective. While several works have looked at generating dance for a given music, automatically generating music for a given dance remains under-explored. This capability could have several creative expression and entertainment applications. We present some early explorations in this direction. We present a search-based offline approach that generates music after processing the entire dance video and an online approach that uses a deep neural network to generate music on-the-fly as the video proceeds. We compare these approaches to a strong heuristic baseline via human studies and present our findings. We have integrated our online approach in a live demo! A video of the demo can be found here: https://sites.google.com/view/dance2music/live-demo.
Synthesize human motions from music, i.e., music to dance, is appealing and attracts lots of research interests in recent years. It is challenging due to not only the requirement of realistic and complex human motions for dance, but more importantly,
Automatic melody generation for pop music has been a long-time aspiration for both AI researchers and musicians. However, learning to generate euphonious melody has turned out to be highly challenging due to a number of factors. Representation of mul
Music creation is typically composed of two parts: composing the musical score, and then performing the score with instruments to make sounds. While recent work has made much progress in automatic music generation in the symbolic domain, few attempts
In this paper, we propose a lightweight music-generating model based on variational autoencoder (VAE) with structured attention. Generating music is different from generating text because the melodies with chords give listeners distinguished polyphon
Objective evaluation (OE) is essential to artificial music, but its often very hard to determine the quality of OEs. Hitherto, subjective evaluation (SE) remains reliable and prevailing but suffers inevitable disadvantages that OEs may overcome. Ther