ﻻ يوجد ملخص باللغة العربية
We introduce a tempering approach with stochastic density functional theory (sDFT), labeled t-sDFT, which reduces the statistical errors in the estimates of observable expectation values. This is achieved by rewriting the electronic density as a sum of a warm component complemented by colder correction(s). Since the warm component is larger in magnitude but faster to evaluate, we use many more stochastic orbitals for its evaluation than for the smaller-sized colder correction(s). This results in a significant reduction of the statistical fluctuations and the bias compared to sDFT for the same computational effort. We the methods performance on large hydrogen-passivated silicon nanocrystals (NCs), finding a reduction in the systematic error in the energy by more than an order of magnitude, while the systematic errors in the forces are also quenched. Similarly, the statistical fluctuations are reduced by factors of around 4-5 for the total energy and around 1.5-2 for the forces on the atoms. Since the embedding in t-sDFT is fully stochastic, it is possible to combine t-sDFT with other variants of sDFT such as energy-window sDFT and embedded-fragmented sDFT.
We derive the second-order approximation (PT2) to the ensemble correlation energy functional by applying the G{o}rling-Levy perturbation theory on the ensemble density-functional theory (EDFT). Its performance is checked by calculating excitation ene
Real-time time-dependent density functional theory (rt-TDDFT) with hybrid exchange-correlation functional has wide-ranging applications in chemistry and material science simulations. However, it can be thousands of times more expensive than a convent
We train a neural network as the universal exchange-correlation functional of density-functional theory that simultaneously reproduces both the exact exchange-correlation energy and potential. This functional is extremely non-local, but retains the c
By using the quantum Ising chain as a test bed and treating the spin polarization along the external transverse field as the generalized density, we examine the performance of different levels of density functional approximations parallel to those wi
Imaginary-time time-dependent Density functional theory (it-TDDFT) has been proposed as an alternative method for obtaining the ground state within density functional theory (DFT) which avoids some of the difficulties with convergence encountered by