ترغب بنشر مسار تعليمي؟ اضغط هنا

Cauchy Combination Test for Sparse Signals

187   0   0.0 ( 0 )
 نشر من قبل Mingya Long
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Aggregating multiple effects is often encountered in large-scale data analysis where the fraction of significant effects is generally small. Many existing methods cannot handle it effectively because of lack of computational accuracy for small p-values. The Cauchy combination test (abbreviated as CCT) ( J Am Statist Assoc, 2020, 115(529):393-402) is a powerful and computational effective test to aggregate individual $p$-values under arbitrary correlation structures. This work revisits CCT and shows three key contributions including that (i) the tail probability of CCT can be well approximated by a standard Cauchy distribution under much more relaxed conditions placed on individual p-values instead of the original test statistics; (ii) the relaxation conditions are shown to be satisfied for many popular copulas formulating bivariate distributions; (iii) the power of CCT is no less than that of the minimum-type test as the number of tests goes to infinity with some regular conditions. These results further broaden the theories and applications of CCT. The simulation results verify the theoretic results and the performance of CCT is further evaluated with data from a prostate cancer study.



قيم البحث

اقرأ أيضاً

We propose a general new method, the conditional permutation test, for testing the conditional independence of variables $X$ and $Y$ given a potentially high-dimensional random vector $Z$ that may contain confounding factors. The proposed test permut es entries of $X$ non-uniformly, so as to respect the existing dependence between $X$ and $Z$ and thus account for the presence of these confounders. Like the conditional randomization test of Cand`es et al. (2018), our test relies on the availability of an approximation to the distribution of $X mid Z$. While Cand`es et al. (2018)s test uses this estimate to draw new $X$ values, for our test we use this approximation to design an appropriate non-uniform distribution on permutations of the $X$ values already seen in the true data. We provide an efficient Markov Chain Monte Carlo sampler for the implementation of our method, and establish bounds on the Type I error in terms of the error in the approximation of the conditional distribution of $Xmid Z$, finding that, for the worst case test statistic, the inflation in Type I error of the conditional permutation test is no larger than that of the conditional randomization test. We validate these theoretical results with experiments on simulated data and on the Capital Bikeshare data set.
We consider exact algorithms for Bayesian inference with model selection priors (including spike-and-slab priors) in the sparse normal sequence model. Because the best existing exact algorithm becomes numerically unstable for sample sizes over n=500, there has been much attention for alternative approaches like approximate algorithms (Gibbs sampling, variational Bayes, etc.), shrinkage priors (e.g. the Horseshoe prior and the Spike-and-Slab LASSO) or empirical Bayesian methods. However, by introducing algorithmic ideas from online sequential prediction, we show that exact calculations are feasible for much larger sample sizes: for general model selection priors we reach n=25000, and for certain spike-and-slab priors we can easily reach n=100000. We further prove a de Finetti-like result for finite sample sizes that characterizes exactly which model selection priors can be expressed as spike-and-slab priors. The computational speed and numerical accuracy of the proposed methods are demonstrated in experiments on simulated data, on a differential gene expression data set, and to compare the effect of multiple hyper-parameter settings in the beta-binomial prior. In our experimental evaluation we compute guaranteed bounds on the numerical accuracy of all new algorithms, which shows that the proposed methods are numerically reliable whereas an alternative based on long division is not.
We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coeffic ients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high dimensional settings where the number of predictors can grow sub-exponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example.
This paper investigates the high-dimensional linear regression with highly correlated covariates. In this setup, the traditional sparsity assumption on the regression coefficients often fails to hold, and consequently many model selection procedures do not work. To address this challenge, we model the variations of covariates by a factor structure. Specifically, strong correlations among covariates are explained by common factors and the remaining variations are interpreted as idiosyncratic components of each covariate. This leads to a factor-adjusted regression model with both common factors and idiosyncratic components as covariates. We generalize the traditional sparsity assumption accordingly and assume that all common factors but only a small number of idiosyncratic components contribute to the response. A Bayesian procedure with a spike-and-slab prior is then proposed for parameter estimation and model selection. Simulation studies show that our Bayesian method outperforms its lasso analogue, manifests insensitivity to the overestimates of the number of common factors, pays a negligible price in the no correlation case, and scales up well with increasing sample size, dimensionality and sparsity. Numerical results on a real dataset of U.S. bond risk premia and macroeconomic indicators lend strong support to our methodology.
This work is motivated by learning the individualized minimal clinically important difference, a vital concept to assess clinical importance in various biomedical studies. We formulate the scientific question into a high-dimensional statistical probl em where the parameter of interest lies in an individualized linear threshold. The goal of this paper is to develop a hypothesis testing procedure for the significance of a single element in this high-dimensional parameter as well as for the significance of a linear combination of this parameter. The difficulty dues to the high-dimensionality of the nuisance component in developing such a testing procedure, and also stems from the fact that this high-dimensional threshold model is nonregular and the limiting distribution of the corresponding estimator is nonstandard. To deal with these challenges, we construct a test statistic via a new bias corrected smoothed decorrelated score approach, and establish its asymptotic distributions under both the null and local alternative hypotheses. In addition, we propose a double-smoothing approach to select the optimal bandwidth parameter in our test statistic and provide theoretical guarantees for the selected bandwidth. We conduct comprehensive simulation studies to demonstrate how our proposed procedure can be applied in empirical studies. Finally, we apply the proposed method to a clinical trial where the scientific goal is to assess the clinical importance of a surgery procedure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا