ﻻ يوجد ملخص باللغة العربية
Micro-expression recognition (textbf{MER}) has attracted lots of researchers attention in a decade. However, occlusion will occur for MER in real-world scenarios. This paper deeply investigates an interesting but unexplored challenging issue in MER, ie, occlusion MER. First, to research MER under real-world occlusion, synthetic occluded micro-expression databases are created by using various mask for the community. Second, to suppress the influence of occlusion, a underline{R}egion-inspired underline{R}elation underline{R}easoning underline{N}etwork (textbf{RRRN}) is proposed to model relations between various facial regions. RRRN consists of a backbone network, the Region-Inspired (textbf{RI}) module and Relation Reasoning (textbf{RR}) module. More specifically, the backbone network aims at extracting feature representations from different facial regions, RI module computing an adaptive weight from the region itself based on attention mechanism with respect to the unobstructedness and importance for suppressing the influence of occlusion, and RR module exploiting the progressive interactions among these regions by performing graph convolutions. Experiments are conducted on handout-database evaluation and composite database evaluation tasks of MEGC 2018 protocol. Experimental results show that RRRN can significantly explore the importance of facial regions and capture the cooperative complementary relationship of facial regions for MER. The results also demonstrate RRRN outperforms the state-of-the-art approaches, especially on occlusion, and RRRN acts more robust to occlusion.
Micro-expression, for its high objectivity in emotion detection, has emerged to be a promising modality in affective computing. Recently, deep learning methods have been successfully introduced into the micro-expression recognition area. Whilst the h
We present a novel facial expression recognition network, called Distract your Attention Network (DAN). Our method is based on two key observations. Firstly, multiple classes share inherently similar underlying facial appearance, and their difference
Micro-expressions are reflections of peoples true feelings and motives, which attract an increasing number of researchers into the study of automatic facial micro-expression recognition. The short detection window, the subtle facial muscle movements,
By extracting spatial and temporal characteristics in one network, the two-stream ConvNets can achieve the state-of-the-art performance in action recognition. However, such a framework typically suffers from the separately processing of spatial and t
Cross-modal retrieval aims to enable flexible retrieval experience by combining multimedia data such as image, video, text, and audio. One core of unsupervised approaches is to dig the correlations among different object representations to complete s