ﻻ يوجد ملخص باللغة العربية
Neural networks have proven to be efficient for a number of practical applications ranging from image recognition to identifying phase transitions in quantum physics models. In this paper we investigate the application of neural networks to state classification in a single-shot quantum measurement. We use dispersive readout of a superconducting transmon circuit to demonstrate an increase in assignment fidelity for both two and three state classification. More importantly, our method is ready for on-the-fly data processing without overhead or need for large data transfer to a hard drive. In addition we demonstrate the capacity of neural networks to be trained against experimental imperfections, such as phase drift of a local oscillator in a heterodyne detection scheme.
Background: In cognitive neuroscience the potential of Deep Neural Networks (DNNs) for solving complex classification tasks is yet to be fully exploited. The most limiting factor is that DNNs as notorious black boxes do not provide insight into neuro
Machine Learning provides powerful tools for a variety of applications, including disease diagnosis through medical image classification. In recent years, quantum machine learning techniques have been put forward as a way to potentially enhance perfo
Despite considerable advancements with deep neural language models (LMs), neural text generation still suffers from degeneration: generated text is repetitive, generic, self-inconsistent, and lacking commonsense. The empirical analyses on sentence-le
Cardiac arrhythmia is a prevalent and significant cause of morbidity and mortality among cardiac ailments. Early diagnosis is crucial in providing intervention for patients suffering from cardiac arrhythmia. Traditionally, diagnosis is performed by e
Memorization in over-parameterized neural networks could severely hurt generalization in the presence of mislabeled examples. However, mislabeled examples are hard to avoid in extremely large datasets collected with weak supervision. We address this