ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural networks for on-the-fly single-shot state classification

68   0   0.0 ( 0 )
 نشر من قبل Rohit Navarathna
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural networks have proven to be efficient for a number of practical applications ranging from image recognition to identifying phase transitions in quantum physics models. In this paper we investigate the application of neural networks to state classification in a single-shot quantum measurement. We use dispersive readout of a superconducting transmon circuit to demonstrate an increase in assignment fidelity for both two and three state classification. More importantly, our method is ready for on-the-fly data processing without overhead or need for large data transfer to a hard drive. In addition we demonstrate the capacity of neural networks to be trained against experimental imperfections, such as phase drift of a local oscillator in a heterodyne detection scheme.



قيم البحث

اقرأ أيضاً

Background: In cognitive neuroscience the potential of Deep Neural Networks (DNNs) for solving complex classification tasks is yet to be fully exploited. The most limiting factor is that DNNs as notorious black boxes do not provide insight into neuro physiological phenomena underlying a decision. Layer-wise Relevance Propagation (LRP) has been introduced as a novel method to explain individual network decisions. New Method: We propose the application of DNNs with LRP for the first time for EEG data analysis. Through LRP the single-trial DNN decisions are transformed into heatmaps indicating each data points relevance for the outcome of the decision. Results: DNN achieves classification accuracies comparable to those of CSP-LDA. In subjects with low performance subject-to-subject transfer of trained DNNs can improve the results. The single-trial LRP heatmaps reveal neurophysiologically plausible patterns, resembling CSP-derived scalp maps. Critically, while CSP patterns represent class-wise aggregated information, LRP heatmaps pinpoint neural patterns to single time points in single trials. Comparison with Existing Method(s): We compare the classification performance of DNNs to that of linear CSP-LDA on two data sets related to motor-imaginery BCI. Conclusion: We have demonstrated that DNN is a powerful non-linear tool for EEG analysis. With LRP a new quality of high-resolution assessment of neural activity can be reached. LRP is a potential remedy for the lack of interpretability of DNNs that has limited their utility in neuroscientific applications. The extreme specificity of the LRP-derived heatmaps opens up new avenues for investigating neural activity underlying complex perception or decision-related processes.
Machine Learning provides powerful tools for a variety of applications, including disease diagnosis through medical image classification. In recent years, quantum machine learning techniques have been put forward as a way to potentially enhance perfo rmance in machine learning applications, both through quantum algorithms for linear algebra and quantum neural networks. In this work, we study two different quantum neural network techniques for medical image classification: first by employing quantum circuits in training of classical neural networks, and second, by designing and training quantum orthogonal neural networks. We benchmark our techniques on two different imaging modalities, retinal color fundus images and chest X-rays. The results show the promises of such techniques and the limitations of current quantum hardware.
Despite considerable advancements with deep neural language models (LMs), neural text generation still suffers from degeneration: generated text is repetitive, generic, self-inconsistent, and lacking commonsense. The empirical analyses on sentence-le vel attention patterns reveal that neural text degeneration may be associated with insufficient learning of inductive biases by the attention mechanism. Our findings motivate on-the-fly attention modularization, a simple but effective method for injecting inductive biases into attention computation during inference. The resulting text produced by the language model with attention modularization can yield enhanced diversity and commonsense reasoning while maintaining fluency and coherence.
Cardiac arrhythmia is a prevalent and significant cause of morbidity and mortality among cardiac ailments. Early diagnosis is crucial in providing intervention for patients suffering from cardiac arrhythmia. Traditionally, diagnosis is performed by e xamination of the Electrocardiogram (ECG) by a cardiologist. This method of diagnosis is hampered by the lack of accessibility to expert cardiologists. For quite some time, signal processing methods had been used to automate arrhythmia diagnosis. However, these traditional methods require expert knowledge and are unable to model a wide range of arrhythmia. Recently, Deep Learning methods have provided solutions to performing arrhythmia diagnosis at scale. However, the black-box nature of these models prohibit clinical interpretation of cardiac arrhythmia. There is a dire need to correlate the obtained model outputs to the corresponding segments of the ECG. To this end, two methods are proposed to provide interpretability to the models. The first method is a novel application of Gradient-weighted Class Activation Map (Grad-CAM) for visualizing the saliency of the CNN model. In the second approach, saliency is derived by learning the input deletion mask for the LSTM model. The visualizations are provided on a model whose competence is established by comparisons against baselines. The results of model saliency not only provide insight into the prediction capability of the model but also aligns with the medical literature for the classification of cardiac arrhythmia.
Memorization in over-parameterized neural networks could severely hurt generalization in the presence of mislabeled examples. However, mislabeled examples are hard to avoid in extremely large datasets collected with weak supervision. We address this problem by reasoning counterfactually about the loss distribution of examples with uniform random labels had they were trained with the real examples, and use this information to remove noisy examples from the training set. First, we observe that examples with uniform random labels have higher losses when trained with stochastic gradient descent under large learning rates. Then, we propose to model the loss distribution of the counterfactual examples using only the network parameters, which is able to model such examples with remarkable success. Finally, we propose to remove examples whose loss exceeds a certain quantile of the modeled loss distribution. This leads to On-the-fly Data Denoising (ODD), a simple yet effective algorithm that is robust to mislabeled examples, while introducing almost zero computational overhead compared to standard training. ODD is able to achieve state-of-the-art results on a wide range of datasets including real-world ones such as WebVision and Clothing1M.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا