ﻻ يوجد ملخص باللغة العربية
We study nonconvex homogeneous quadratically constrained quadratic optimization with one or two constraints, denoted by (QQ1) and (QQ2), respectively. (QQ2) contains (QQ1), trust region subproblem (TRS) and ellipsoid regularized total least squares problem as special cases. It is known that there is a necessary and sufficient optimality condition for the global minimizer of (QQ2). In this paper, we first show that any local minimizer of (QQ1) is globally optimal. Unlike its special case (TRS) with at most one local non-global minimizer, (QQ2) may have infinitely many local non-global minimizers. At any local non-global minimizer of (QQ2), both linearly independent constraint qualification and strict complementary condition hold, and the Hessian of the Lagrangian has exactly one negative eigenvalue. As a main contribution, we prove that the standard second-order sufficient optimality condition for any strict local non-global minimizer of (QQ2) remains necessary. Applications and the impossibility of further extension are discussed.
We prove that a special variety of quadratically constrained quadratic programs, occurring frequently in conjunction with the design of wave systems obeying causality and passivity (i.e. systems with bounded response), universally exhibit strong dual
For some typical and widely used non-convex half-quadratic regularization models and the Ambrosio-Tortorelli approximate Mumford-Shah model, based on the Kurdyka-L ojasiewicz analysis and the recent nonconvex proximal algorithms, we developed an effi
A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear equality constrained optimization problems in which the objective function is defined by an expectation of a stochastic function. The algorithmic structure of the
Nonlinearly constrained nonconvex and nonsmooth optimization models play an increasingly important role in machine learning, statistics and data analytics. In this paper, based on the augmented Lagrangian function we introduce a flexible first-order
Generalized trust-region subproblem (GT) is a nonconvex quadratic optimization with a single quadratic constraint. It reduces to the classical trust-region subproblem (T) if the constraint set is a Euclidean ball. (GT) is polynomially solvable based