ترغب بنشر مسار تعليمي؟ اضغط هنا

Few-shot Language Coordination by Modeling Theory of Mind

294   0   0.0 ( 0 )
 نشر من قبل Hao Zhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

$textit{No man is an island.}$ Humans communicate with a large community by coordinating with different interlocutors within short conversations. This ability has been understudied by the research on building neural communicative agents. We study the task of few-shot $textit{language coordination}$: agents quickly adapting to their conversational partners language abilities. Different from current communicative agents trained with self-play, we require the lead agent to coordinate with a $textit{population}$ of agents with different linguistic abilities, quickly adapting to communicate with unseen agents in the population. This requires the ability to model the partners beliefs, a vital component of human communication. Drawing inspiration from theory-of-mind (ToM; Premack& Woodruff (1978)), we study the effect of the speaker explicitly modeling the listeners mental states. The speakers, as shown in our experiments, acquire the ability to predict the reactions of their partner, which helps it generate instructions that concisely express its communicative goal. We examine our hypothesis that the instructions generated with ToM modeling yield better communication performance in both a referential game and a language navigation task. Positive results from our experiments hint at the importance of explicitly modeling communication as a socio-pragmatic progress.



قيم البحث

اقرأ أيضاً

Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-speci fic fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3s few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
Can we construct a neural model that is inductively biased towards learning human languages? Motivated by this question, we aim at constructing an informative prior over neural weights, in order to adapt quickly to held-out languages in the task of c haracter-level language modeling. We infer this distribution from a sample of typologically diverse training languages via Laplace approximation. The use of such a prior outperforms baseline models with an uninformative prior (so-called fine-tuning) in both zero-shot and few-shot settings. This shows that the prior is imbued with universal phonological knowledge. Moreover, we harness additional language-specific side information as distant supervision for held-out languages. Specifically, we condition language models on features from typological databases, by concatenating them to hidden states or generating weights with hyper-networks. These features appear beneficial in the few-shot setting, but not in the zero-shot setting. Since the paucity of digital texts affects the majority of the worlds languages, we hope that these findings will help broaden the scope of applications for language technology.
Pretrained language models (LMs) perform well on many tasks even when learning from a few examples, but prior work uses many held-out examples to tune various aspects of learning, such as hyperparameters, training objectives, and natural language tem plates (prompts). Here, we evaluate the few-shot ability of LMs when such held-out examples are unavailable, a setting we call true few-shot learning. We test two model selection criteria, cross-validation and minimum description length, for choosing LM prompts and hyperparameters in the true few-shot setting. On average, both marginally outperform random selection and greatly underperform selection based on held-out examples. Moreover, selection criteria often prefer models that perform significantly worse than randomly-selected ones. We find similar results even when taking into account our uncertainty in a models true performance during selection, as well as when varying the amount of computation and number of examples used for selection. Overall, our findings suggest that prior work significantly overestimated the true few-shot ability of LMs given the difficulty of few-shot model selection.
We introduce a few-shot transfer learning method for keyword spotting in any language. Leveraging open speech corpora in nine languages, we automate the extraction of a large multilingual keyword bank and use it to train an embedding model. With just five training examples, we fine-tune the embedding model for keyword spotting and achieve an average F1 score of 0.75 on keyword classification for 180 new keywords unseen by the embedding model in these nine languages. This embedding model also generalizes to new languages. We achieve an average F1 score of 0.65 on 5-shot models for 260 keywords sampled across 13 new languages unseen by the embedding model. We investigate streaming accuracy for our 5-shot models in two contexts: keyword spotting and keyword search. Across 440 keywords in 22 languages, we achieve an average streaming keyword spotting accuracy of 87.4% with a false acceptance rate of 4.3%, and observe promising initial results on keyword search.
General-purpose language models have demonstrated impressive capabilities, performing on par with state-of-the-art approaches on a range of downstream natural language processing (NLP) tasks and benchmarks when inferring instructions from very few ex amples. Here, we evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages without any parameter updates. We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones. Finally, we find the in-context few-shot cross-lingual prediction results of language models are significantly better than random prediction, and they are competitive compared to the existing state-of-the-art cross-lingual models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا