ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical conditions in the warped accretion disk of a massive star. 349 GHz ALMA observations of G023.01$-$00.41

138   0   0.0 ( 0 )
 نشر من قبل Alberto Sanna
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Young massive stars warm up the large amount of gas and dust which condenses in their vicinity, exciting a forest of lines from different molecular species. Their line brightness is a diagnostic tool of the gas physical conditions locally, which we use to set constraints on the environment where massive stars form. We made use of the Atacama Large Millimeter/submillimeter Array at frequencies near 349 GHz, with an angular resolution of $0.1$, to observe the methyl cyanide (CH$_3$CN) emission which arises from the accretion disk of a young massive star. We sample the disk midplane with twelve distinct beams, where we get an independent measure of the gas (and dust) physical conditions. The accretion disk extends above the midplane showing a double-armed spiral morphology projected onto the plane of the sky, which we sample with ten additional beams: along these apparent spiral features, gas undergoes velocity gradients of about $rm 1 km s^{-1}$ per 2000 au. The gas temperature (T) rises symmetrically along each side of the disk, from about 98 K at 3000 au to 289 K at 250 au, following a power law with radius, R$^{-0.43}$. The CH$_3$CN column density (N) increases from $rm 9.2times10^{15} cm^{-2}$ to $rm 8.7times10^{17} cm^{-2}$ at the same radii, following a power law with radius, R$^{-1.8}$. In the framework of a circular gaseous disk observed approximately edge-on, we infer an H$_2$ volume density in excess of $rm 4.8times10^9 cm^{-3}$ at a distance of 250 au from the star. We study the disk stability against fragmentation following the methodology by Kratter et al. (2010), appropriate under rapid accretion, and we show that the disk is marginally prone to fragmentation along its whole extent.



قيم البحث

اقرأ أيضاً

It is well established that Solar-mass stars gain mass via disk accretion, until the mass reservoir of the disk is exhausted and dispersed, or condenses into planetesimals. Accretion disks are intimately coupled with mass ejection via polar cavities, in the form of jets and less collimated winds, which allow mass accretion through the disk by removing a substantial fraction of its angular momentum. Whether disk accretion is the mechanism leading to the formation of stars with much higher masses is still unclear. Here, we are able to build a comprehensive picture for the formation of an O-type star, by directly imaging a molecular disk which rotates and undergoes infall around the central star, and drives a molecular jet which arises from the inner disk regions. The accretion disk is truncated between 2000-3000au, it has a mass of about a tenth of the central star mass, and is infalling towards the central star at a high rate (6x10^-4 Msun/yr), as to build up a very massive object. These findings, obtained with the Atacama Large Millimeter/submillimeter Array at 700au resolution, provide observational proof that young massive stars can form via disk accretion much like Solar-mass stars.
184 - Luis A. Zapata 2013
We present sensitive, high angular resolution ($sim$ 0.2 arcsec) submillimeter continuum and line observations of IRAS 16293-2422B made with the Atacama Large Millimeter/Submillimeter Array (ALMA). The 0.45 mm continuum observations reveal a single a nd very compact source associated with IRAS 16293-2422B. This submillimeter source has a deconvolved angular size of about 400 {it milli-arcseconds} (50 AU), and does not show any inner structure inside of this diameter. The H$^{13}$CN, HC$^{15}$N, and CH$_{3}$OH line emission regions are about twice as large as the continuum emission and reveal a pronounced inner depression or hole with a size comparable to that estimated for the submillimeter continuum. We suggest that the presence of this inner depression and the fact that we do not see inner structure (or a flat structure) in the continuum is produced by very optically thick dust located in the innermost parts of IRAS 16293-2422B. All three lines also show pronounced inverse P-Cygni profiles with infall and dispersion velocities larger than those recently reported from observations at lower frequencies, suggesting that we are detecting faster, and more turbulent gas located closer to the central object. Finally, we report a small east-west velocity gradient in IRAS 16293-2422B that suggests that its disk plane is likely located very close to the plane of the sky.
Theories of massive star formation predict that massive protostars accrete gas through circumstellar disks. Although several cases have been found already thanks to high-angular resolution interferometry, it remains unknown the internal physical stru cture of these disks and, in particular, whether they present warps or internal holes as observed in low-mass proto-planetary disks. Here, we report very high angular resolution observations of the H21alpha radio recombination line carried out in Band 9 with the Atacama Large Millimeter/submillimeter Array (beam of 80 mas x 60 mas, or 70 au x 50 au) toward the IRS2 massive young stellar object in the Monoceros R2 star-forming cluster. The H21alpha line shows maser amplification, which allows us to study the kinematics and physical structure of the ionised gas around the massive protostar down to spatial scales of ~1-2 au. Our ALMA images and 3D radiative transfer modelling reveal that the ionized gas around IRS2 is distributed in a Keplerian circumstellar disk and an expanding wind. The H21alpha emission centroids at velocities between -10 and 20 km s-1 deviate from the disk plane, suggesting a warping for the disk. This could be explained by the presence of a secondary object (a stellar companion or a massive planet) within the system. The ionized wind seems to be launched from the disk surface at distances ~11 au from the central star, consistent with magnetically-regulated disk wind models. This suggests a similar wind launching mechanism to that recently found for evolved massive stars such as MWC349A and MWC922.
Interferometric observations of the W33A massive star-formation region, performed with the Submillimeter Array (SMA) and the Very Large Array (VLA) at resolutions from 5 arcsec (0.1 pc) to 0.5 arcsec (0.01 pc) are presented. Our three main findings a re: (1) parsec-scale, filamentary structures of cold molecular gas are detected. Two filaments at different velocities intersect in the zone where the star formation is occurring. This is consistent with triggering of the star-formation activity by the convergence of such filaments, as predicted by numerical simulations of star formation initiated by converging flows. (2) The two dusty cores (MM1 and MM2) at the intersection of the filaments are found to be at different evolutionary stages, and each of them is resolved into multiple condensations. MM1 and MM2 have markedly different temperatures, continuum spectral indices, molecular-line spectra, and masses of both stars and gas. (3) The dynamics of the hot-core MM1 indicates the presence of a rotating disk in its center (MM1-Main) around a faint free-free source. The stellar mass is estimated to be approximately 10 Msun. A massive molecular outflow is observed along the rotation axis of the disk.
Understanding the physics and geometry of accretion and ejection around super massive black holes (SMBHs) is important to understand the evolution of active galactic nuclei (AGN) and therefore of the large scale structures of the Universe. We aim at providing a simple, coherent, and global view of the sub-parsec accretion and ejection flow in AGN with varying Eddington ratio, $dot{m}$, and black hole mass, $M_{BH}$. We made use of theoretical insights, results of numerical simulations, as well as UV and X-ray observations to review the inner regions of AGN by including different accretion and ejection modes, with special emphasis on the role of radiation in driving powerful accretion disk winds from the inner regions around the central SMBH. We propose five $dot{m}$ regimes where the physics of the inner accretion and ejection flow around SMBHs is expected to change, and that correspond observationally to quiescent and inactive galaxies; low luminosity AGN (LLAGN); Seyferts and mini-broad absorption line quasars (mini-BAL QSOs); narrow line Seyfert 1 galaxies (NLS1s) and broad absorption line quasars (BAL QSOs); and super-Eddington sources. We include in this scenario radiation-driven disk winds, which are strong in the high $dot{m}$, large $M_{BH}$ regime, and possibly present but likely weak in the moderate $dot{m}$, small $M_{BH}$ regime. A great diversity of the accretion/ejection flows in AGN can be explained to a good degree by varying just two fundamental properties: the Eddington ratio $dot{m}$ and the black hole mass $M_{BH}$, and by the inclusion of accretion disk winds that can naturally be launched by the radiation emitted from luminous accretion disks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا