ﻻ يوجد ملخص باللغة العربية
(Abridged) Dynamical friction can be used to distinguish Newtonian gravity and modified Newtonian dynamics (MOND) because it works differently in these frameworks. This concept, however, has yet to be explored very much with MOND. Previous simulations showed weaker dynamical friction during major mergers for MOND than for Newtonian gravity with dark matter. Analytic arguments suggest the opposite for minor mergers. In this work, we verify the analytic predictions for MOND by high-resolution $N$-body simulations of globular clusters (GCs) moving in isolated ultra-diffuse galaxies (UDGs). We test the MOND analog of the Chandrasekhar formula for the dynamical friction proposed by Sanchez-Salcedo on a single GC. We also explore whether MOND allows GC systems of isolated UDGs to survive without sinking into nuclear star clusters. The simulations are run using the adaptive-mesh-refinement code Phantom of Ramses. The mass resolution is $20,M_odot$ and the spatial resolution $50,$pc. The GCs are modeled as point masses. Simulations including a single GC reveal that, as long as the apocenter of the GC is over about 0.5 effective radii, the Sanchez-Salcedo formula works excellently, with an effective Coulomb logarithm increasing with orbital circularity. Once the GC reaches the central kiloparsec, its sinking virtually stops, likely because of the core stalling mechanism. In simulations with multiple GCs, many of them sink toward the center, but the core stalling effect seems to prevent them from forming a nuclear star cluster. The GC system ends up with a lower velocity dispersion than the stars of the galaxy. By scaling the simulations, we extend these results to most UDG parameters, as long as these UDGs are not external-field dominated.
Ultra-diffuse galaxies (UDGs) are unusual galaxies with low luminosities, similar to classical dwarf galaxies, but sizes up to $sim!5$ larger than expected for their mass. Some UDGs have large populations of globular clusters (GCs), something unexpec
We present Hubble Space Telescope imaging of two ultra diffuse galaxies (UDGs) with measured stellar velocity dispersions in the Coma cluster. The galaxies, Dragonfly 44 and DFX1, have effective radii of 4.7 kpc and 3.5 kpc and velocity dispersions o
We study the evolution of star clusters located in the outer regions of a galaxy undergoing a sudden mass loss through gas expulsion in the framework of Milgromian dynamics (MOND) by means of N-body simulations. We find that, to leave a bound star cl
We present a study of ultra-diffuse galaxies (UDGs) in the Virgo Cluster based on deep imaging from the Next Generation Virgo Cluster Survey (NGVS). Applying a new definition for the UDG class based on galaxy scaling relations, we define samples of 4
The ultra-diffuse galaxy NGC 1052-DF2 has an overabundance of luminous globular clusters (GCs), and its kinematics is consistent with the presence of little to no dark matter. As the velocity dispersion among the GCs is comparable to the expected int