ﻻ يوجد ملخص باللغة العربية
Tropical cyclones are one of the most powerful and destructive natural phenomena on earth. Tropical storms and heavy rains can cause floods, which lead to human lives and economic loss. Devastating winds accompanying cyclones heavily affect not only the coastal regions, even distant areas. Our study focuses on the intensity estimation, particularly cyclone grade and maximum sustained surface wind speed (MSWS) of a tropical cyclone over the North Indian Ocean. We use various machine learning algorithms to estimate cyclone grade and MSWS. We have used the basin of origin, date, time, latitude, longitude, estimated central pressure, and pressure drop as attributes of our models. We use multi-class classification models for the categorical outcome variable, cyclone grade, and regression models for MSWS as it is a continuous variable. Using the best track data of 28 years over the North Indian Ocean, we estimate grade with an accuracy of 88% and MSWS with a root mean square error (RMSE) of 2.3. For higher grade categories (5-7), accuracy improves to an average of 98.84%. We tested our model with two recent tropical cyclones in the North Indian Ocean, Vayu and Fani. For grade, we obtained an accuracy of 93.22% and 95.23% respectively, while for MSWS, we obtained RMSE of 2.2 and 3.4 and $R^2$ of 0.99 and 0.99, respectively.
Our collective understanding of azimuthally-asymmetric features within the coherent structure of a tropical cyclone (TC) continues to improve with the availability of more detailed observations and high-resolution model outputs. However, a precise un
Progress within physical oceanography has been concurrent with the increasing sophistication of tools available for its study. The incorporation of machine learning (ML) techniques offers exciting possibilities for advancing the capacity and speed of
Tropical cyclone (TC) intensity forecasts are ultimately issued by human forecasters. The human in-the-loop pipeline requires that any forecasting guidance must be easily digestible by TC experts if it is to be adopted at operational centers like the
This study investigated an approach to improve the accuracy of computationally lightweight surrogate models by updating forecasts based on historical accuracy relative to sparse observation data. Using a lightweight, ocean-wave forecasting model, we
Assessments of impacts of climate change and future projections over the Indian region, have so far relied on a single regional climate model (RCM) - eg., the PRECIS RCM of the Hadley Centre, UK. While these assessments have provided inputs to variou