ترغب بنشر مسار تعليمي؟ اضغط هنا

Randomized Quantum Hamiltonian Systems

133   0   0.0 ( 0 )
 نشر من قبل John Gough
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a procedure for averaging one-parameter random unitary groups and random self-adjoint groups. Central to this is a generalization of the notion of weak convergence of a sequence of measures and the corresponding generalization of the concept of convergence in distribution. The convergence is established in determination of the sequence of compositions of independent random transformations. When sequences of compositions of independent random transformations of the shift by the Euclidean vector in space, the results obtained coincide with the central limit theorem for the sums independent random vectors. The results are applied to the dynamics of quantum systems arising random quantization of the classical Hamiltonian system.



قيم البحث

اقرأ أيضاً

131 - Yu Pan , Zibo Miao , Nina H. Amini 2015
Quantum control could be implemented by varying the system Hamiltonian. According to adiabatic theorem, a slowly changing Hamiltonian can approximately keep the system at the ground state during the evolution if the initial state is a ground state. I n this paper we consider this process as an interpolation between the initial and final Hamiltonians. We use the mean value of a single operator to measure the distance between the final state and the ideal ground state. This measure could be taken as the error of adiabatic approximation. We prove under certain conditions, this error can be precisely estimated for an arbitrarily given interpolating function. This error estimation could be used as guideline to induce adiabatic evolution. According to our calculation, the adiabatic approximation error is not proportional to the average speed of the variation of the system Hamiltonian and the inverse of the energy gaps in many cases. In particular, we apply this analysis to an example on which the applicability of the adiabatic theorem is questionable.
A family of discontinuous symplectic maps on the cylinder is considered. This family arises naturally in the study of nonsmooth Hamiltonian dynamics and in switched Hamiltonian systems. The transformation depends on two parameters and is a canonical model for the study of bounded and unbounded behavior in discontinuous area-preserving mappings due to nonlinear resonances. This paper provides a general description of the map and points out its connection with another map considered earlier by Kesten. In one special case, an unbounded orbit is explicitly constructed.
The notion of monodromy was introduced by J. J. Duistermaat as the first obstruction to the existence of global action coordinates in integrable Hamiltonian systems. This invariant was extensively studied since then and was shown to be non-trivial in various concrete examples of finite-dimensional integrable systems. The goal of the present paper is to give a brief overview of monodromy and discuss some of its generalisations. In particular, we will discuss the monodromy around a focus-focus singularity and the notions of quantum, fractional and scattering monodromy. The exposition will be complemented with a number of examples and open problems.
We study four particular 3-dimensional natural Hamiltonian systems defined in conformally Euclidean spaces. We prove their superintegrability and we obtain, in the four cases, the maximal number of functionally independent integrals of motion. The tw o first systems are related to the 3-dimensional isotropic oscillator and the superintegrability is quadratic. The third system is obtained as a continuous deformation of an oscillator with ratio of frequencies 1:1:2 and with three additional nonlinear terms of the form $k_2/x^2$, $k_3/y^2$ and $k_4/z^2$, and the fourth system is obtained as a deformation of the Kepler Hamiltonian also with these three particular nonlinear terms. These third and fourth systems are superintegrable but with higher-order constants of motion. The four systems depend on a real parameter in such a way that they are continuous functions of the parameter (in a certain domain of the parameter) and in the limit of such parameter going to zero the Euclidean dynamics is recovered.
156 - Jeremiah Birrell , Jan Wehr 2017
This paper studies homogenization of stochastic differential systems. The standard example of this phenomenon is the small mass limit of Hamiltonian systems. We consider this case first from the heuristic point of view, stressing the role of detailed balance and presenting the heuristics based on a multiscale expansion. This is used to propose a physical interpretation of recent results by the authors, as well as to motivate a new theorem proven here. Its main content is a sufficient condition, expressed in terms of solvability of an associated partial differential equation (the cell problem), under which the homogenization limit of an SDE is calculated explicitly. The general theorem is applied to a class of systems, satisfying a generalized detailed balance condition with a position-dependent temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا