ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffusive limits of Lipschitz functionals of Poisson measures

97   0   0.0 ( 0 )
 نشر من قبل Laurent Decreusefond
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Continuous Time Markov Chains, Hawkes processes and many other interesting processes can be described as solution of stochastic differential equations driven by Poisson measures. Previous works, using the Steins method, give the convergence rate of a sequence of renormalized Poisson measures towards the Brownian motion in several distances, constructed on the model of the Kantorovitch-Rubinstein (or Wasserstein-1) distance. We show that many operations (like time change, convolution) on continuous functions are Lipschitz continuous to extend these quantified convergences to diffuse limits of Markov processes and long-time behavior of Hawkes processes.



قيم البحث

اقرأ أيضاً

Given a vector $F=(F_1,dots,F_m)$ of Poisson functionals $F_1,dots,F_m$, we investigate the proximity between $F$ and an $m$-dimensional centered Gaussian random vector $N_Sigma$ with covariance matrix $Sigmainmathbb{R}^{mtimes m}$. Apart from findin g proximity bounds for the $d_2$- and $d_3$-distances, based on classes of smooth test functions, we obtain proximity bounds for the $d_{convex}$-distance, based on the less tractable test functions comprised of indicators of convex sets. The bounds for all three distances are shown to be of the same order, which is presumably optimal. The bounds are multivariate counterparts of the univariate second order Poincare inequalities and, as such, are expressed in terms of integrated moments of first and second order difference operators. The derived second order Poincare inequalities for indicators of convex sets are made possible by a new bound on the second derivatives of the solution to the Stein equation for the multivariate normal distribution. We present applications to the multivariate normal approximation of first order Poisson integrals and of statistics of Boolean models.
We give a new proof of a recent resolution by Michelen and Sahasrabudhe of a conjecture of Shepp and Vanderbei that the moduli of roots of Gaussian Kac polynomials of degree $n$, centered at $1$ and rescaled by $n^2$, should form a Poisson point proc ess. We use this new approach to verify a conjecture of Michelen and Sahasrabudhe that the Poisson statistics are in fact universal.
267 - Alexey M.Kulik 2010
General sufficient conditions are given for absolute continuity and convergence in variation of the distributions of the unctionals on a probability space, generated by a Poisson point measure. The phase space of the Poisson point measure is supposed to be of the form (0,infty)times U, and its intensity measure to be equal dtPi(du). We introduce the family of time stretching transformations of the configurations of the point measure. The sufficient conditions for absolute continuity and convergence in variation are given in the terms of the time stretching transformations and the relative differential operators. These conditions are applied to solutions of SDEs driven by Poisson point measures, including an SDEs with non-constant jump rate.
291 - Giovanni Peccati 2008
This survey provides a unified discussion of multiple integrals, moments, cumulants and diagram formulae associated with functionals of completely random measures. Our approach is combinatorial, as it is based on the algebraic formalism of partition lattices and Mobius functions. Gaussian and Poisson measures are treated in great detail. We also present several combinatorial interpretations of some recent CLTs involving sequences of random variables belonging to a fixed Wiener chaos.
122 - A. Meli , A. Mastichiadis 2007
It is well accepted today that diffusive acceleration in shocks results to the cosmic ray spectrum formation. This is in principle true for non-relativistic shocks, since there is a detailed theory covering a large range of their properties and the r esulting power-law spectrum, which is nevertheless not as efficient to reach the very high energies observed in the cosmic ray spectrum. On the other hand, the cosmic ray maximum energy and the resulting spectra from relativistic shocks, are still under investigation and debate concerning their contribution to the features of the cosmic ray spectrum and the measured, or implied, cosmic ray radiation from candidate astrophysical sources. Here, we discuss the efficiency of the first order Fermi (diffusive) acceleration mechanism up to relativistic shock speeds, presenting Monte Carlo simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا