ﻻ يوجد ملخص باللغة العربية
Through numerical simulations, it is predicted that the gravitational waves (GWs) reflect the characteristics of the core-collapse supernova (CCSN) explosion mechanism. There are multiple GW excitation processes that occur inside a star before its explosion, and it is suggested that the GWs originating from the CCSN have a mode for each excitation process in terms of time-frequency representation. Therefore, we propose an application of the Hilbert-Huang Transform (HHT), which is a high-resolution time-frequency analysis method, to analyze these GW modes for theoretically probing and increasing our understanding of the explosion mechanism. The HHT defines frequency as a function of time, and is not bound by the trade-off between time and frequency resolutions. In this study, we analyze a gravitational waveform obtained from a three-dimensional general-relativistic CCSN model that showed a vigorous activity of the standing-accretion-shock-instability (SASI). We succeed in extracting the SASI induced GWs with high resolution on a time-frequency representation using the HHT and we examine their instantaneous frequencies.
It is known that a quasinormal mode (QNM) of a remnant black hole dominates a ringdown gravitational wave (GW) in a binary black hole (BBH) merger. To study properties of the QNMs, it is important to determine the time when the QNMs appear in a GW si
A mechanism of formation of gravitational waves in the Universe is considered for a nonspherical collapse of matter. Nonspherical collapse results are presented for a uniform spheroid of dust and a finite-entropy spheroid. Numerical simulation result
We present a new event trigger generator based on the Hilbert-Huang transform, named EtaGen ($eta$Gen). It decomposes a time-series data into several adaptive modes without imposing a priori bases on the data. The adaptive modes are used to find tran
Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis to detection, reconstruction, and the source localization of the gravitational-wave (GW) signals. We u
Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next ga