ترغب بنشر مسار تعليمي؟ اضغط هنا

AoI-minimizing Scheduling in UAV-relayed IoT Networks

218   0   0.0 ( 0 )
 نشر من قبل Biplav Choudhury
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Due to flexibility, autonomy and low operational cost, unmanned aerial vehicles (UAVs), as fixed aerial base stations, are increasingly being used as textit{relays} to collect time-sensitive information (i.e., status updates) from IoT devices and deliver it to the nearby terrestrial base station (TBS), where the information gets processed. In order to ensure timely delivery of information to the TBS (from all IoT devices), optimal scheduling of time-sensitive information over two hop UAV-relayed IoT networks (i.e., IoT device to the UAV [hop 1], and UAV to the TBS [hop 2]) becomes a critical challenge. To address this, we propose scheduling policies for Age of Information (AoI) minimization in such two-hop UAV-relayed IoT networks. To this end, we present a low-complexity MAF-MAD scheduler, that employs Maximum AoI First (MAF) policy for sampling of IoT devices at UAV (hop 1) and Maximum AoI Difference (MAD) policy for updating sampled packets from UAV to the TBS (hop 2). We show that MAF-MAD is the optimal scheduler under ideal conditions, i.e., error-free channels and generate-at-will traffic generation at IoT devices. On the contrary, for realistic conditions, we propose a Deep-Q-Networks (DQN) based scheduler. Our simulation results show that DQN-based scheduler outperforms MAF-MAD scheduler and three other baseline schedulers, i.e., Maximal AoI First (MAF), Round Robin (RR) and Random, employed at both hops under general conditions when the network is small (with 10s of IoT devices). However, it does not scale well with network size whereas MAF-MAD outperforms all other schedulers under all considered scenarios for larger networks.



قيم البحث

اقرأ أيضاً

Internet of Things (IoT) with its growing number of deployed devices and applications raises significant challenges for network maintenance procedures. In this work, we formulate a problem of autonomous maintenance in IoT networks as a Partially Obse rvable Markov Decision Process. Subsequently, we utilize Deep Reinforcement Learning algorithms (DRL) to train agents that decide if a maintenance procedure is in order or not and, in the former case, the proper type of maintenance needed. To avoid wasting the scarce resources of IoT networks we utilize the Age of Information (AoI) metric as a reward signal for the training of the smart agents. AoI captures the freshness of the sensory data which are transmitted by the IoT sensors as part of their normal service provision. Numerical results indicate that AoI integrates enough information about the past and present states of the system to be successfully used in the training of smart agents for the autonomous maintenance of the network.
Age of Information (AoI) has gained importance as a Key Performance Indicator (KPI) for characterizing the freshness of information in information-update systems and time-critical applications. Recent theoretical research on the topic has generated s ignificant understanding of how various algorithms perform in terms of this metric on various system models and networking scenarios. In this paper, by the help of the theoretical results, we analyzed the AoI behavior on real-life networks, using our two test-beds, addressing IoT networks and regular computers. Excessive number of AoI measurements are provided for variations of transport protocols such as TCP, UDP and web-socket, on wired and wireless links. Practical issues such as synchronization and selection of hardware along with transport protocol, and their effects on AoI are discussed. The results provide insight toward application and transport layer mechanisms for optimizing AoI in real-life networks.
In this work, we consider the problem of jointly minimizing the average cost of sampling and transmitting status updates by users over a wireless channel subject to average Age of Information (AoI) constraints. Errors in the transmission may occur an d a scheduling policy has to decide if the users sample a new packet or attempt for retransmission of the packet sampled previously. The cost consists of both sampling and transmission costs. The sampling of a new packet after a failure imposes an additional cost on the system. We formulate a stochastic optimization problem with the average cost in the objective under average AoI constraints. To solve this problem, we propose three scheduling policies; a) a dynamic policy, that is centralized and requires full knowledge of the state of the system, b) two stationary randomized policies that require no knowledge of the state of the system. We utilize tools from Lyapunov optimization theory in order to provide the dynamic policy, and we prove that its solution is arbitrary close to the optimal one. In order to provide the randomized policies, we model the system by utilizing Discrete Time Markov Chain (DTMC). We provide closed-form and approximated expressions for the average AoI and its distribution, for each randomized policy. Simulation results show the importance of providing the option to transmit an old packet in order to minimize the total average cost.
This article investigates the energy efficiency issue in non-orthogonal multiple access (NOMA)-enhanced Internet-of-Things (IoT) networks, where a mobile unmanned aerial vehicle (UAV) is exploited as a flying base station to collect data from ground devices via the NOMA protocol. With the aim of maximizing network energy efficiency, we formulate a joint problem of UAV deployment, device scheduling and resource allocation. First, we formulate the joint device scheduling and spectrum allocation problem as a three-sided matching problem, and propose a novel low-complexity near-optimal algorithm. We also introduce the novel concept of `exploration into the matching game for further performance improvement. By algorithm analysis, we prove the convergence and stability of the final matching state. Second, in an effort to allocate proper transmit power to IoT devices, we adopt the Dinkelbachs algorithm to obtain the optimal power allocation solution. Furthermore, we provide a simple but effective approach based on disk covering problem to determine the optimal number and locations of UAVs stop points to ensure that all IoT devices can be fully covered by the UAV via line-of-sight (LoS) links for the sake of better channel condition. Numerical results unveil that: i) the proposed joint UAV deployment, device scheduling and resource allocation scheme achieves much higher EE compared to predefined stationary UAV deployment case and fixed power allocation scheme, with acceptable complexity; and ii) the UAV-aided IoT networks with NOMA greatly outperforms the OMA case in terms of number of accessed devices.
Future IoT networks consist of heterogeneous types of IoT devices (with various communication types and energy constraints) which are assumed to belong to an IoT service provider (ISP). To power backscattering-based and wireless-powered devices, the ISP has to contract with an energy service provider (ESP). This article studies the strategic interactions between the ISP and its ESP and their implications on the joint optimal time scheduling and energy trading for heterogeneous devices. To that end, we propose an economic framework using the Stackelberg game to maximize the network throughput and energy efficiency of both the ISP and ESP. Specifically, the ISP leads the game by sending its optimal service time and energy price request (that maximizes its profit) to the ESP. The ESP then optimizes and supplies the transmission power which satisfies the ISPs request (while maximizing ESPs utility). To obtain the Stackelberg equilibrium (SE), we apply a backward induction technique which first derives a closed-form solution for the ESP. Then, to tackle the non-convex optimization problem for the ISP, we leverage the block coordinate descent and convex-concave procedure techniques to design two partitioning schemes (i.e., partial adjustment (PA) and joint adjustment (JA)) to find the optimal energy price and service time that constitute local SEs. Numerical results reveal that by jointly optimizing the energy trading and the time allocation for heterogeneous IoT devices, one can achieve significant improvements in terms of the ISPs profit compared with those of conventional transmission methods. Different tradeoffs between the ESPs and ISPs profits and complexities of the PA/JA schemes can also be numerically tuned. Simulations also show that the obtained local SEs approach the socially optimal welfare when the ISPs benefit per transmitted bit is higher than a given threshold.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا