ترغب بنشر مسار تعليمي؟ اضغط هنا

BrainNNExplainer: An Interpretable Graph Neural Network Framework for Brain Network based Disease Analysis

236   0   0.0 ( 0 )
 نشر من قبل Hejie Cui
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Interpretable brain network models for disease prediction are of great value for the advancement of neuroscience. GNNs are promising to model complicated network data, but they are prone to overfitting and suffer from poor interpretability, which prevents their usage in decision-critical scenarios like healthcare. To bridge this gap, we propose BrainNNExplainer, an interpretable GNN framework for brain network analysis. It is mainly composed of two jointly learned modules: a backbone prediction model that is specifically designed for brain networks and an explanation generator that highlights disease-specific prominent brain network connections. Extensive experimental results with visualizations on two challenging disease prediction datasets demonstrate the unique interpretability and outstanding performance of BrainNNExplainer.



قيم البحث

اقرأ أيضاً

Regularizers helped deep neural networks prevent feature co-adaptations. Dropout,as a commonly used regularization technique, stochastically disables neuron ac-tivations during network optimization. However, such complete feature disposal can affect the feature representation and network understanding. Toward betterdescriptions of latent representations, we present DropGraph that learns regularization function by constructing a stand-alone graph from the backbone features. DropGraph first samples stochastic spatial feature vectors and then incorporates graph reasoning methods to generate feature map distortions. This add-on graph regularizes the network during training and can be completely skipped during inference. We provide intuitions on the linkage between graph reasoning andDropout with further discussions on how partial graph reasoning method reduces feature correlations. To this end, we extensively study the modeling of graphvertex dependencies and the utilization of the graph for distorting backbone featuremaps. DropGraph was validated on four tasks with a total of 7 different datasets.The experimental results show that our method outperforms other state-of-the-art regularizers while leaving the base model structure unmodified during inference.
98 - Xuan Kan , Hejie Cui , Ying Guo 2021
Recent studies in neuroscience show great potential of functional brain networks constructed from fMRI data for popularity modeling and clinical predictions. However, existing functional brain networks are noisy and unaware of downstream prediction t asks, while also incompatible with recent powerful machine learning models of GNNs. In this work, we develop an end-to-end trainable pipeline to extract prominent fMRI features, generate brain networks, and make predictions with GNNs, all under the guidance of downstream prediction tasks. Preliminary experiments on the PNC fMRI data show the superior effectiveness and unique interpretability of our framework.
Brain image analysis has advanced substantially in recent years with the proliferation of neuroimaging datasets acquired at different resolutions. While research on brain image super-resolution has undergone a rapid development in the recent years, b rain graph super-resolution is still poorly investigated because of the complex nature of non-Euclidean graph data. In this paper, we propose the first-ever deep graph super-resolution (GSR) framework that attempts to automatically generate high-resolution (HR) brain graphs with N nodes (i.e., anatomical regions of interest (ROIs)) from low-resolution (LR) graphs with N nodes where N < N. First, we formalize our GSR problem as a node feature embedding learning task. Once the HR nodes embeddings are learned, the pairwise connectivity strength between brain ROIs can be derived through an aggregation rule based on a novel Graph U-Net architecture. While typically the Graph U-Net is a node-focused architecture where graph embedding depends mainly on node attributes, we propose a graph-focused architecture where the node feature embedding is based on the graph topology. Second, inspired by graph spectral theory, we break the symmetry of the U-Net architecture by super-resolving the low-resolution brain graph structure and node content with a GSR layer and two graph convolutional network layers to further learn the node embeddings in the HR graph. Third, to handle the domain shift between the ground-truth and the predicted HR brain graphs, we incorporate adversarial regularization to align their respective distributions. Our proposed AGSR-Net framework outperformed its variants for predicting high-resolution functional brain graphs from low-resolution ones. Our AGSR-Net code is available on GitHub at https://github.com/basiralab/AGSR-Net.
Metal-organic frameworks (MOFs) are nanoporous compounds composed of metal ions and organic linkers. MOFs play an important role in industrial applications such as gas separation, gas purification, and electrolytic catalysis. Important MOF properties such as potential energy are currently computed via techniques such as density functional theory (DFT). Although DFT provides accurate results, it is computationally costly. We propose a machine learning approach for estimating the potential energy of candidate MOFs, decomposing it into separate pair-wise atomic interactions using a graph neural network. Such a technique will allow high-throughput screening of candidates MOFs. We also generate a database of 50,000 spatial configurations and high-quality potential energy values using DFT.
Brain graphs (i.e, connectomes) constructed from medical scans such as magnetic resonance imaging (MRI) have become increasingly important tools to characterize the abnormal changes in the human brain. Due to the high acquisition cost and processing time of multimodal MRI, existing deep learning frameworks based on Generative Adversarial Network (GAN) focused on predicting the missing multimodal medical images from a few existing modalities. While brain graphs help better understand how a particular disorder can change the connectional facets of the brain, synthesizing a target brain multigraph (i.e, multiple brain graphs) from a single source brain graph is strikingly lacking. Additionally, existing graph generation works mainly learn one model for each target domain which limits their scalability in jointly predicting multiple target domains. Besides, while they consider the global topological scale of a graph (i.e., graph connectivity structure), they overlook the local topology at the node scale (e.g., how central a node is in the graph). To address these limitations, we introduce topology-aware graph GAN architecture (topoGAN), which jointly predicts multiple brain graphs from a single brain graph while preserving the topological structure of each target graph. Its three key innovations are: (i) designing a novel graph adversarial auto-encoder for predicting multiple brain graphs from a single one, (ii) clustering the encoded source graphs in order to handle the mode collapse issue of GAN and proposing a cluster-specific decoder, (iii) introducing a topological loss to force the prediction of topologically sound target brain graphs. The experimental results using five target domains demonstrated the outperformance of our method in brain multigraph prediction from a single graph in comparison with baseline approaches.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا