ﻻ يوجد ملخص باللغة العربية
This paper is concerned with the limit laws of the extreme order statistics derived from a symmetric Laplace walk. We provide two different descriptions of the point process of the limiting extreme order statistics: a branching representation and a squared Bessel representation. These complementary descriptions expose various hidden symmetries in branching processes and Brownian motion which lie behind some striking formulas found by Schehr and Majumdar (Phys. Rev. Lett., 108:040601). In particular, the Bessel process of dimension $4 = 2+2$ appears in the descriptions as a path decomposition of Brownian motion at a local minimum and the Ray-Knight description of Brownian local times near the minimum.
This paper is concerned with the limit theory of the extreme order statistics derived from random walks. We establish the joint convergence of the order statistics near the minimum of a random walk in terms of the Feller chains. Detailed descriptions
A random walk in a sparse random environment is a model introduced by Matzavinos et al. [Electron. J. Probab. 21, paper no. 72: 2016] as a generalization of both a simple symmetric random walk and a classical random walk in a random environment. A ra
In this article, we consider a Branching Random Walk (BRW) on the real line where the underlying genealogical structure is given through a supercritical branching process in i.i.d. environment and satisfies Kesten-Stigum condition. The displacements
We consider a branching random walk on the lattice, where the branching rates are given by an i.i.d. Pareto random potential. We show that the system of particles, rescaled in an appropriate way, converges in distribution to a scaling limit that is i
We consider a random walk $tilde S$ which has different increment distributions in positive and negative half-planes. In the upper half-plane the increments are mean-zero i.i.d. with finite variance. In the lower half-plane we consider two cases: inc