ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the following non-local semi-linear parabolic equation with advection: for $1 le p<1+frac{2}{N}$, begin{equation*} begin{cases} u_t+v cdot abla u-Delta u=|u|^p-int_{mathbb T^N} |u|^p quad & textrm{on} quad mathbb T^N, u textrm{periodic} quad & textrm{on} quad partial mathbb T^N end{cases} end{equation*} with initial data $u_0$ defined on $mathbb T^N$. Here $v$ is an incompressible flow, and $mathbb T^N=[0, 1]^N$ is the $N$-torus with $N$ being the dimension. We first prove the local existence of mild solutions to the above equation for arbitrary data in $L^2$. We then study the global existence of the solutions under the following two scenarios: (1). when $v$ is a mixing flow; (2). when $v$ is a shear flow. More precisely, we show that under these assumptions, there exists a global solution to the above equation in the sense of $L^2$.
In this paper, we consider the advective Cahn-Hilliard equation in 2D with shear flow: $$ begin{cases} u_t+v_1(y) partial_x u+gamma Delta^2 u=gamma Delta(u^3-u) quad & quad textrm{on} quad mathbb T^2; u textrm{periodic} quad & quad textrm{on} qu
We consider an evolution problem associated to the Kazdan-Warner equation on a closed Riemann surface $(Sigma,g)$ begin{align*} -Delta_{g}u=8pileft(frac{he^{u}}{int_{Sigma}he^{u}{rm d}mu_{g}}-frac{1}{int_{Sigma}{rm d}mu_{g}}right) end{align*} w
The local and global existence of the Cauchy problem for semilinear heat equations with small data is studied in the weighted $L^infty (mathbb R^n)$ framework by a simple contraction argument. The contraction argument is based on a weighted uniform c
We consider a class of semilinear nonlocal problems with vanishing exterior condition and establish a Ambrosetti-Prodi type phenomenon when the nonlinear term satisfies certain conditions. Our technique makes use of the probabilistic tools and heat kernel estimates.
Considered herein is a multi-component Novikov equation, which admits bi-Hamiltonian structure, infinitely many conserved quantities and peaked solutions. In this paper, we deduce two blow-up criteria for this system and global existence for some two