ترغب بنشر مسار تعليمي؟ اضغط هنا

Fourth Painleve Equation and $PT$-Symmetric Hamiltonians

103   0   0.0 ( 0 )
 نشر من قبل Carl Bender
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is an addendum to earlier papers cite{R1,R2} in which it was shown that the unstable separatrix solutions for Painleve I and II are determined by $PT$-symmetric Hamiltonians. In this paper unstable separatrix solutions of the fourth Painleve transcendent are studied numerically and analytically. For a fixed initial value, say $y(0)=1$, a discrete set of initial slopes $y(0)=b_n$ give rise to separatrix solutions. Similarly, for a fixed initial slope, say $y(0)=0$, a discrete set of initial values $y(0)=c_n$ give rise to separatrix solutions. For Painleve IV the large-$n$ asymptotic behavior of $b_n$ is $b_nsim B_{rm IV}n^{3/4}$ and that of $c_n$ is $c_nsim C_{rm IV} n^{1/2}$. The constants $B_{rm IV}$ and $C_{rm IV}$ are determined both numerically and analytically. The analytical values of these constants are found by reducing the nonlinear Painleve IV equation to the linear eigenvalue equation for the sextic $PT$-symmetric Hamiltonian $H=frac{1}{2} p^2+frac{1}{8} x^6$.



قيم البحث

اقرأ أيضاً

We express discrete Painleve equations as discrete Hamiltonian systems. The discrete Hamiltonian systems here mean the canonical transformations defined by generating functions. Our construction relies on the classification of the discrete Painleve e quations based on the surface-type. The discrete Hamiltonians we obtain are written in the logarithm and dilogarithm functions.
164 - H. Aratyn , J. van de Leur 2008
We present an explicit method to perform similarity reduction of a Riemann-Hilbert factorization problem for a homogeneous GL (N, C) loop group and use our results to find solutions to the Painleve VI equation for N=3. The tau function of the reduced hierarchy is shown to satisfy the sigma-form of the Painleve VI equation. A class of tau functions of the reduced integrable hierarchy is constructed by means of a Grassmannian formulation. These solutions provide rational solutions of the Painleve VI equation.
An interpolation problem related to the elliptic Painleve equation is formulated and solved. A simple form of the elliptic Painleve equation and the Lax pair are obtained. Explicit determinant formulae of special solutions are also given.
We study the relation of irregular conformal blocks with the Painleve III$_3$ equation. The functional representation for the quasiclassical irregular block is shown to be consistent with the BPZ equations of conformal field theory and the Hamilton-J acobi approach to Painleve III$_3$. It leads immediately to a limiting case of the blow-up equations for dual Nekrasov partition function of 4d pure supersymmetric gauge theory, which can be even treated as a defining system of equations for both $c=1$ and $ctoinfty$ conformal blocks. We extend this analysis to the domain of strong-coupling regime where original definition of conformal blocks and Nekrasov functions is not known and apply the results to spectral problem of the Matheiu equations. Finally, we propose a construction of irregular conformal blocks in the strong coupling region by quantization of Painleve III$_3$ equation, and obtain in this way a general expression, reproducing $c=1$ and quasiclassical $ctoinfty$ results as its particular cases. We have also found explicit integral representations for $c=1$ and $c=-2$ irregular blocks at infinity for some special points.
90 - M. Jimbo , H. Nagoya , H. Sakai 2017
Iorgov, Lisovyy, and Teschner established a connection between isomonodromic deformation of linear differential equations and Liouville conformal field theory at $c=1$. In this paper we present a $q$ analog of their construction. We show that the gen eral solution of the $q$-Painleve VI equation is a ratio of four tau functions, each of which is given by a combinatorial series arising in the AGT correspondence. We also propose conjectural bilinear equations for the tau functions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا