ﻻ يوجد ملخص باللغة العربية
Domain adaptation (DA) approaches address domain shift and enable networks to be applied to different scenarios. Although various image DA approaches have been proposed in recent years, there is limited research towards video DA. This is partly due to the complexity in adapting the different modalities of features in videos, which includes the correlation features extracted as long-term dependencies of pixels across spatiotemporal dimensions. The correlation features are highly associated with action classes and proven their effectiveness in accurate video feature extraction through the supervised action recognition task. Yet correlation features of the same action would differ across domains due to domain shift. Therefore we propose a novel Adversarial Correlation Adaptation Network (ACAN) to align action videos by aligning pixel correlations. ACAN aims to minimize the distribution of correlation information, termed as Pixel Correlation Discrepancy (PCD). Additionally, video DA research is also limited by the lack of cross-domain video datasets with larger domain shifts. We, therefore, introduce a novel HMDB-ARID dataset with a larger domain shift caused by a larger statistical difference between domains. This dataset is built in an effort to leverage current datasets for dark video classification. Empirical results demonstrate the state-of-the-art performance of our proposed ACAN for both existing and the new video DA datasets.
The main progress for action segmentation comes from densely-annotated data for fully-supervised learning. Since manual annotation for frame-level actions is time-consuming and challenging, we propose to exploit auxiliary unlabeled videos, which are
Spatio-temporal action localization is an important problem in computer vision that involves detecting where and when activities occur, and therefore requires modeling of both spatial and temporal features. This problem is typically formulated in the
In this report, we describe the technical details of our submission to the 2021 EPIC-KITCHENS-100 Unsupervised Domain Adaptation Challenge for Action Recognition. Leveraging multiple modalities has been proved to benefit the Unsupervised Domain Adapt
In Domain Adaptation (DA), where the feature distributions of the source and target domains are different, various distance-based methods have been proposed to minimize the discrepancy between the source and target domains to handle the domain shift.
With the prevalence of RGB-D cameras, multi-modal video data have become more available for human action recognition. One main challenge for this task lies in how to effectively leverage their complementary information. In this work, we propose a Mod