ﻻ يوجد ملخص باللغة العربية
Fine-tuning pre-trained language models such as BERT has become a common practice dominating leaderboards across various NLP tasks. Despite its recent success and wide adoption, this process is unstable when there are only a small number of training samples available. The brittleness of this process is often reflected by the sensitivity to random seeds. In this paper, we propose to tackle this problem based on the noise stability property of deep nets, which is investigated in recent literature (Arora et al., 2018; Sanyal et al., 2020). Specifically, we introduce a novel and effective regularization method to improve fine-tuning on NLP tasks, referred to as Layer-wise Noise Stability Regularization (LNSR). We extend the theories about adding noise to the input and prove that our method gives a stabler regularization effect. We provide supportive evidence by experimentally confirming that well-performing models show a low sensitivity to noise and fine-tuning with LNSR exhibits clearly higher generalizability and stability. Furthermore, our method also demonstrates advantages over other state-of-the-art algorithms including L2-SP (Li et al., 2018), Mixout (Lee et al., 2020) and SMART (Jiang et al., 2020).
Large pre-trained sentence encoders like BERT start a new chapter in natural language processing. A common practice to apply pre-trained BERT to sequence classification tasks (e.g., classification of sentences or sentence pairs) is by feeding the emb
This paper is a study of fine-tuning of BERT contextual representations, with focus on commonly observed instabilities in few-sample scenarios. We identify several factors that cause this instability: the common use of a non-standard optimization met
Fine-tuning pre-trained cross-lingual language models can transfer task-specific supervision from one language to the others. In this work, we propose to improve cross-lingual fine-tuning with consistency regularization. Specifically, we use example
A semantic equivalence assessment is defined as a task that assesses semantic equivalence in a sentence pair by binary judgment (i.e., paraphrase identification) or grading (i.e., semantic textual similarity measurement). It constitutes a set of task
While there has been much recent work studying how linguistic information is encoded in pre-trained sentence representations, comparatively little is understood about how these models change when adapted to solve downstream tasks. Using a suite of an