ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian Convolutional Neural Networks for Seven Basic Facial Expression Classifications

69   0   0.0 ( 0 )
 نشر من قبل Hailan Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The seven basic facial expression classifications are a basic way to express complex human emotions and are an important part of artificial intelligence research. Based on the traditional Bayesian neural network framework, the ResNet18_BNN network constructed in this paper has been improved in the following three aspects: (1) A new objective function is proposed, which is composed of the KL loss of uncertain parameters and the intersection of specific parameters. Entropy loss composition. (2) Aiming at a special objective function, a training scheme for alternately updating these two parameters is proposed. (3) Only model the parameters of the last convolution group. Through testing on the FER2013 test set, we achieved 71.5% and 73.1% accuracy in PublicTestSet and PrivateTestSet, respectively. Compared with traditional Bayesian neural networks, our method brings the highest classification accuracy gain.



قيم البحث

اقرأ أيضاً

69 - Zhilei Liu , Le Li , Yunpeng Wu 2019
Facial expression analysis in the wild is challenging when the facial image is with low resolution or partial occlusion. Considering the correlations among different facial local regions under different facial expressions, this paper proposes a novel facial expression restoration method based on generative adversarial network by integrating an improved graph convolutional network (IGCN) and region relation modeling block (RRMB). Unlike conventional graph convolutional networks taking vectors as input features, IGCN can use tensors of face patches as inputs. It is better to retain the structure information of face patches. The proposed RRMB is designed to address facial generative tasks including inpainting and super-resolution with facial action units detection, which aims to restore facial expression as the ground-truth. Extensive experiments conducted on BP4D and DISFA benchmarks demonstrate the effectiveness of our proposed method through quantitative and qualitative evaluations.
This paper describes the proposed methodology, data used and the results of our participation in the ChallengeTrack 2 (Expr Challenge Track) of the Affective Behavior Analysis in-the-wild (ABAW) Competition 2020. In this competition, we have used a p roposed deep convolutional neural network (CNN) model to perform automatic facial expression recognition (AFER) on the given dataset. Our proposed model has achieved an accuracy of 50.77% and an F1 score of 29.16% on the validation set.
We present a new loss function, namely Wing loss, for robust facial landmark localisation with Convolutional Neural Networks (CNNs). We first compare and analyse different loss functions including L2, L1 and smooth L1. The analysis of these loss func tions suggests that, for the training of a CNN-based localisation model, more attention should be paid to small and medium range errors. To this end, we design a piece-wise loss function. The new loss amplifies the impact of errors from the interval (-w, w) by switching from L1 loss to a modified logarithm function. To address the problem of under-representation of samples with large out-of-plane head rotations in the training set, we propose a simple but effective boosting strategy, referred to as pose-based data balancing. In particular, we deal with the data imbalance problem by duplicating the minority training samples and perturbing them by injecting random image rotation, bounding box translation and other data augmentation approaches. Last, the proposed approach is extended to create a two-stage framework for robust facial landmark localisation. The experimental results obtained on AFLW and 300W demonstrate the merits of the Wing loss function, and prove the superiority of the proposed method over the state-of-the-art approaches.
109 - Andrey V. Savchenko 2021
In this paper, the multi-task learning of lightweight convolutional neural networks is studied for face identification and classification of facial attributes (age, gender, ethnicity) trained on cropped faces without margins. The necessity to fine-tu ne these networks to predict facial expressions is highlighted. Several models are presented based on MobileNet, EfficientNet and RexNet architectures. It was experimentally demonstrated that they lead to near state-of-the-art results in age, gender and race recognition on the UTKFace dataset and emotion classification on the AffectNet dataset. Moreover, it is shown that the usage of the trained models as feature extractors of facial regions in video frames leads to 4.5% higher accuracy than the previously known state-of-the-art single models for the AFEW and the VGAF datasets from the EmotiW challenges. The models and source code are publicly available at https://github.com/HSE-asavchenko/face-emotion-recognition.
104 - Tao Pu , Tianshui Chen , Yuan Xie 2020
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance i n some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods. Codes and trained models are available at https://github.com/HCPLab-SYSU/AUE-CRL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا