ﻻ يوجد ملخص باللغة العربية
Twin boundaries (TBs) were identified to show conflicting positive/negative effects on the physical properties of CH3NH3PbI3 perovskite, but their roles on the mechanical properties are pending. Herein, tensile characteristics of a variety of TB-dominated bicrystalline CH3NH3PbI3 perovskites are explored using molecular simulations. TB-contained CH3NH3PbI3 are classified into four types from their tensile ductile detwinning characteristics. Type I is characterized by smooth loading flow stressstrain responses, originating from relatively uniform stress distribution induced gradual amorphization at TB region. Types II and III are represented by sudden drop of loading stresses but then distinct ductile flow stress-strain curves, resulting from limited and large-area amorphizations of TB-involved structures, respectively. However, Type IV is highlighted by double apparent peaks in the loading curve followed by ductile flow response, coming from stress-concentration of localization-to-globalization at TB structure, as well as amorphization. This study provides critical insights into mechanics of CH3NH3PbI3 perovskites, and offers that TB engineering is a promising strategy to design mechanically robust hybrid organic-inorganic perovskites-based device systems
Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynam
The organic-inorganic hybrid perovskite CH3NH3PbI3 has attracted significant interest for its high performance in converting solar light into electrical power with an efficiency exceeding 20%. Unfortunately, chemical stability is one major challenge
We report the application of femtosecond four-wave mixing (FWM) to the study of carrier transport in solution-processed CH3NH3PbI3. The diffusion coefficient was extracted through direct detection of the lateral diffusion of carriers utilizing the tr
Low stability of organic-inorganic perovskite (CH3NH3PbI3) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry charact
We present measurements of conductance hysteresis on CH3NH3PbI3 perovskite thin films, performed using the double-wave method, in order to investigate the possibility of a ferroelectric response. A strong frequency dependence of the hysteresis is obs