ﻻ يوجد ملخص باللغة العربية
Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly $50,M_odot$ and $100,M_odot$, while, above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. We show that a massive stellar BH seed can easily grow to $sim 10^3 - 10^4,M_odot$ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers, so that a negative correlation exists between final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs.
Intermediate-mass black holes (IMBHs) have masses of about 100 to 100,000 solar masses. They remain elusive. Observing IMBHs in present-day globular clusters (GCs) would validate a formation channel for seed black holes in the early universe and info
Collisions were suggested to potentially play a role in the formation of massive stars in present day clusters, and have likely been relevant during the formation of massive stars and intermediate mass black holes within the first star clusters. In t
For a sample of nine Galactic globular clusters we measured the inner kinematic profiles with integral-field spectroscopy that we combined with existing outer kinematic measurements and HST luminosity profiles. With this information we are able to de
We present post-Newtonian $N$-body simulations on mergers of accreting stellar-mass black holes (BHs), where such general relativistic effects as the pericenter shift and gravitational wave (GW) emission are taken into consideration. The attention is
Intermediate-mass black holes (IMBHs) by definition have masses of $M_{rm IMBH} sim 10^{2-5}~M_odot$, a range with few observational constraints. Finding IMBHs in globular star clusters (GCs) would validate a formation channel for massive black-hole