ترغب بنشر مسار تعليمي؟ اضغط هنا

Relating the Diverse Merger Histories and Satellite Populations of Nearby Galaxies

113   0   0.0 ( 0 )
 نشر من قبل Adam Smercina
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate whether the considerable diversity in the satellite populations of nearby Milky Way (MW)-mass galaxies is connected with the diversity in their hosts merger histories. Analyzing 8 nearby galaxies with extensive observations of their satellite populations and stellar halos, we characterize each galaxys merger history using the metric of its most dominant merger, $M_{rm star,Dom}$, defined as the greater of either its total accreted stellar mass or most massive current satellite. We find an unexpectedly tight relationship between these galaxies number of $M_{V},{<},{-}9$ satellites within 150 kpc ($N_{rm Sat}$) and $M_{rm star,Dom}$. This relationship remains even after accounting for differences in galaxy mass. Using the star formation and orbital histories of satellites around the MW and M81, we demonstrate that both likely evolved along the $M_{rmstar,Dom}{-}N_{rm Sat}$ relation during their current dominant mergers with the LMC and M82, respectively. We investigate the presence of this relation in galaxy formation models, including using the FIRE simulations to directly compare to the observations. We find no relation between $M_{rmstar,Dom}$ and $N_{rm Sat}$ in FIRE, and a universally large scatter in $N_{rm Sat}$ with $M_{rm star,Dom}$ across models $-$ in direct contrast with the tightness of the empirical relation. This acute difference in the observed and predicted scaling relation between two fundamental galaxy properties signals that current simulations do not sufficiently reproduce diverse merger histories and their effects on satellite populations. Explaining the emergence of this relation is therefore essential for obtaining a complete understanding of galaxy formation.



قيم البحث

اقرأ أيضاً

The merging history of galaxies can be traced with studies of dynamically close pairs. These consist of a massive primary galaxy and a less massive secondary (or satellite) galaxy. The study of the stellar populations of secondary (lower mass) galaxi es in close pairs provides a way to understand galaxy growth by mergers. Here we focus on systems involving at least one massive galaxy - with stellar mass above $10^{11}M_odot$ in the highly complete GAMA survey. Our working sample comprises 2,692 satellite galaxy spectra (0.1<z<0.3). These spectra are combined into high S/N stacks, and binned according to both an internal parameter, the stellar mass of the satellite galaxy (i.e. the secondary), and an external parameter, selecting either the mass of the primary in the pair, or the mass of the corresponding dark matter halo. We find significant variations in the age of the populations with respect to environment. At fixed mass, satellites around the most massive galaxies are older and possibly more metal rich, with age differences ~1-2Gyr within the subset of lower mass satellites ($sim 10^{10}M_odot$). These variations are similar when stacking with respect to the halo mass of the group where the pair is embedded. The population trends in the lower-mass satellites are consistent with the old stellar ages found in the outer regions of massive galaxies.
The majority of spiral and elliptical galaxies in the Universe host very dense and compact stellar systems at their centres known as nuclear star clusters (NSCs). In this work we study the stellar populations and star formation histories (SFH) of the NSCs of six nearby galaxies with stellar masses ranging between $2$ and $8times10^9~{rm M_{odot}}$ (four late-type spirals and two early-types) with high resolution spectroscopy. Our observations are taken with the X-Shooter spectrograph at the VLT. We make use of an empirical simple stellar population (SSP) model grid to fit composite stellar populations to the data and recover the SFHs of the nuclei. We find that the nuclei of all late-type galaxies experienced a prolonged SFH, while the NSCs of the two early-types are consistent with SSPs. The NSCs in the late-type galaxies sample appear to have formed a significant fraction of their stellar mass already more than $10$ Gyr ago, while the NSCs in the two early-type galaxies are surprisingly younger. Stars younger than $100$ Myr are present in at least two nuclei: NGC 247 and NGC 7793, with some evidence for young star formation in NGC 300s NSC. The NSCs of the spirals NGC 247 and NGC 300 are consistent with prolonged in situ star formation with a gradual metallicity enrichment from $sim-1.5$ dex more than $10$ Gyr ago, reaching super-Solar values few hundred Myr ago. NGC 3621 appears to be very metal rich already in the early Universe and NGC 7793 presents us with a very complex SFH, likely dominated by merging of various massive star clusters coming from different environments.
244 - J. Vennik , U. Hopp 2015
We analyse distribution, kinematics and star-formation (SF) properties of satellite galaxies in three different samples of nearby groups. We find that studied groups are generally well approximated by low-concentration NFW model, show a variety of LO S velocity dispersion profiles and signs of SF quenching in outskirts of dwarf satellite galaxies.
The spatially resolved star formation histories are studied for 32 normal star-forming galaxies drawn from the the Spitzer Extended Disk Galaxy Exploration Science survey. At surface brightness sensitivities fainter than 28 mag arcsec$^{-2}$, the new optical photometry is deep enough to complement archival ultraviolet and infrared imaging and to explore the properties of the emission well beyond the traditional optical extents of these nearby galaxies. Fits to the spectral energy distributions using a delayed star formation history model indicate a subtle but interesting average radial trend for the spiral galaxies: the inner stellar systems decrease in age with increasing radius, consistent with inside-out disk formation, but the trend reverses in the outermost regions with the stellar age nearly as old as the innermost stars. These results suggest an old stellar outer disk population formed through radial migration and/or the cumulative history of minor mergers and accretions of satellite dwarf galaxies. The subset of S0 galaxies studied here show the opposite trend compared to what is inferred for spirals: characteristic stellar ages that are increasingly older with radius for the inner portions of the galaxies, and increasingly younger stellar ages for the outer portions. This result suggests that either S0 galaxies are not well modeled by a delayed-$tau$ model, and/or that S0 galaxies have a more complicated formation history than spiral galaxies.
With the goal to refine modelling of shell galaxies and the use of shells to probe the merger history, we develop a new method for implementing dynamical friction in test-particle simulations of radial minor mergers. The friction is combined with a g radual decay of the dwarf galaxy. The coupling of both effects can considerably redistribute positions and luminosities of shells; neglecting them can lead to significant errors in attempts to date the merger.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا