ﻻ يوجد ملخص باللغة العربية
A recent sensitivity study has shown that the $^{35}$K$(p,gamma)^{36}$Ca reaction is one of the ten $(p,gamma)$ reaction rates that could significantly impact the shape of the calculated X-ray burst light curve. In this work, we propose to reinvestigate the $^{35}$K$(p,gamma)^{36}$Ca reaction rate, as well as related uncertainties, by determining the energies and decay branching ratios of $^{36}$Ca levels, within the Gamow window, in the 0.5 to 2 GK X-ray burst temperature range. These properties were studied using the one neutron pick-up transfer reaction $^{37}$Ca$(p,d)^{36}$Ca in inverse kinematics using a radioactive beam of $^{37}$Ca at 48 MeV nucleon$^{-1}$. The experiment performed at GANIL, used the liquid Hydrogen target CRYPTA, the MUST2 detector array for the detection of the light charged particles and a zero degree detection system for the outgoing heavy ions. The atomic mass of $^{36}$Ca is confirmed and new resonances have been proposed together with their proton decay branching ratios. This spectroscopic information, used in combination with recent theoretical predictions for the $gamma$-width, were used to calculate the $^{35}$K$(p,gamma)^{36}$Ca reaction rate. The recommended rate of the present work was obtain within a uncertainty factor of 2 at 1 sigma. This is consistent, with the previous estimate in the X-ray burst temperature range. A large increase of the reaction rate was found at higher temperatures due to two newly discovered resonances. The $^{35}$K$(p,gamma)^{36}$Ca thermonuclear reaction rate is now well constrained by the present work in a broad range of temperatures. Our results show that the $^{35}$K$(p,gamma)^{36}$Ca reaction does not affect the shape of the X-ray burst light curve, and that it can be removed from the list of the few influential proton radiative captures reactions having a strong impact on the light curve.
Shape coexistence is an ubiquitous phenomenon in the neutron-rich nuclei belonging to (or sitting at the shores of) the $N=20$ Island of Inversion (IoI). Exact isospin symmetry predicts the same behaviour for their mirrors and the existence of a prot
The DLS collaboration has recently completed a high statistics study of dilepton production at the Bevalac. In particular, we have measured dielectrons (e+e-) from p-p and p-d collisions to understand the basic dilepton production mechanisms in the e
Isobaric quintets provide the best test of the isobaric multiplet mass equation (IMME) and can uniquely identify higher order corrections suggestive of isospin symmetry breaking effects in the nuclear Hamiltonian. The Generalized IMME (GIMME) is a no
The structure of $^{35}$P was studied with a one-proton knockout reaction at88~MeV/u from a $^{36}$S projectile beam at NSCL. The $gamma$ rays from thedepopulation of excited states in $^{35}$P were detected with GRETINA, whilethe $^{35}$P nuclei wer
According to sensitivity studies, the $^{38}mathrm{K}left( p, gamma right){}^{39}mathrm{Ca}$ reaction has a significant influence on $mathrm{Ar}$, $mathrm{K}$, and $mathrm{Ca}$ production in classical novae. In order to constrain the rate of this rea