Automatic segmentation of hepatocellular carcinoma (HCC) in Digital Subtraction Angiography (DSA) videos can assist radiologists in efficient diagnosis of HCC and accurate evaluation of tumors in clinical practice. Few studies have investigated HCC segmentation from DSA videos. It shows great challenging due to motion artifacts in filming, ambiguous boundaries of tumor regions and high similarity in imaging to other anatomical tissues. In this paper, we raise the problem of HCC segmentation in DSA videos, and build our own DSA dataset. We also propose a novel segmentation network called DSA-LTDNet, including a segmentation sub-network, a temporal difference learning (TDL) module and a liver region segmentation (LRS) sub-network for providing additional guidance. DSA-LTDNet is preferable for learning the latent motion information from DSA videos proactively and boosting segmentation performance. All of experiments are conducted on our self-collected dataset. Experimental results show that DSA-LTDNet increases the DICE score by nearly 4% compared to the U-Net baseline.