ﻻ يوجد ملخص باللغة العربية
An abstract theory of Fourier series in locally convex topological vector spaces is developed. An analog of Fej{e}rs theorem is proved for these series. The theory is applied to distributional solutions of Cauchy-Riemann equations to recover basic results of complex analysis. Some classical results of function theory are also shown to be consequences of the series expansion.
A well known result due to Carlson affirms that a power series with finite and positive radius of convergence R has no Ostrowski gaps if and only if the sequence of zeros of its nth sections is asymptotically equidistributed to {|z|=R}. Here we exten
By using computers to do experimental manipulations on Fourier series, we construct additional series with interesting properties. For example, we construct several series whose sums remain unchanged when the nth term is multiplied by sin(n)/n. One s
V. Nestoridis conjectured that if $Omega$ is a simply connected subset of $mathbb{C}$ that does not contain $0$ and $S(Omega)$ is the set of all functions $fin mathcal{H}(Omega)$ with the property that the set $left{T_N(f)(z)coloneqqsum_{n=0}^Ndfrac{
For 1<p<infty and for weight w in A_p, we show that the r-variation of the Fourier sums of any function in L^p(w) is finite a.e. for r larger than a finite constant depending on w and p. The fact that the variation exponent depends on w is necessary.
We formalize some basic properties of Fourier series in the logic of ACL2(r), which is a variant of ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis. More specifically, we extend a framework for formally