ﻻ يوجد ملخص باللغة العربية
Let $mathcal{T}$ be a rooted tree endowed with the natural partial order $preceq$. Let $(Z(v))_{vin mathcal{T}}$ be a sequence of independent standard Gaussian random variables and let $alpha = (alpha_k)_{k=1}^infty$ be a sequence of real numbers with $sum_{k=1}^infty alpha_k^2<infty$. Set $alpha_0 =0$ and define a Gaussian process on $mathcal{T}$ in the following way: [ G(mathcal{T}, alpha; v): = sum_{upreceq v} alpha_{|u|} Z(u), quad v in mathcal{T}, ] where $|u|$ denotes the graph distance between the vertex $u$ and the root vertex. Under mild assumptions on $mathcal{T}$, we obtain a necessary and sufficient condition for the almost sure boundedness of the above Gaussian process. Our condition is also necessary and sufficient for the almost sure uniform convergence of the Gaussian process $G(mathcal{T}, alpha; v)$ along all rooted geodesic rays in $mathcal{T}$.
The Maki-Thompson rumor model is defined by assuming that a population represented by a graph is subdivided into three classes of individuals; namely, ignorants, spreaders and stiflers. A spreader tells the rumor to any of its nearest ignorant neighb
We address questions of logic and expressibility in the context of random rooted trees. Infiniteness of a rooted tree is not expressible as a first order sentence, but is expressible as an existential monadic second order sentence (EMSO). On the othe
We investigate the effective resistance $R_n$ and conductance $C_n$ between the root and leaves of a binary tree of height $n$. In this electrical network, the resistance of each edge $e$ at distance $d$ from the root is defined by $r_e=2^dX_e$ where
We study the asymptotic behaviour of once-reinforced biased random walk (ORbRW) on Galton-Watson trees. Here the underlying (unreinforced) random walk has a bias towards or away from the root. We prove that in the setting of multiplicative once-reinf
We introduce a general recursive method to construct continuum random trees (CRTs) from independent copies of a random string of beads, that is, any random interval equipped with a random discrete probability measure, and from related structures. We