ترغب بنشر مسار تعليمي؟ اضغط هنا

Parallel and Multi-Objective Falsification with Scenic and VerifAI

215   0   0.0 ( 0 )
 نشر من قبل Kesav Viswanadha
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Falsification has emerged as an important tool for simulation-based verification of autonomous systems. In this paper, we present extensions to the Scenic scenario specification language and VerifAI toolkit that improve the scalability of sampling-based falsification methods by using parallelism and extend falsification to multi-objective specifications. We first present a parallelized framework that is interfaced with both the simulation and sampling capabilities of Scenic and the falsification capabilities of VerifAI, reducing the execution time bottleneck inherently present in simulation-based testing. We then present an extension of VerifAIs falsification algorithms to support multi-objective optimization during sampling, using the concept of rulebooks to specify a preference ordering over multiple metrics that can be used to guide the counterexample search process. Lastly, we evaluate the benefits of these extensions with a comprehensive set of benchmarks written in the Scenic language.



قيم البحث

اقرأ أيضاً

This paper summarizes our formal approach to testing autonomous vehicles (AVs) in simulation for the IEEE AV Test Challenge. We demonstrate a systematic testing framework leveraging our previous work on formally-driven simulation for intelligent cybe r-physical systems. First, to model and generate interactive scenarios involving multiple agents, we used Scenic, a probabilistic programming language for specifying scenarios. A Scenic program defines an abstract scenario as a distribution over configurations of physical objects and their behaviors over time. Sampling from an abstract scenario yields many different concrete scenarios which can be run as test cases for the AV. Starting from a Scenic program encoding an abstract driving scenario, we can use the VerifAI toolkit to search within the scenario for failure cases with respect to multiple AV evaluation metrics. We demonstrate the effectiveness of our testing framework by identifying concrete failure scenarios for an open-source autopilot, Apollo, starting from a variety of realistic traffic scenarios.
Multi-objective controller synthesis concerns the problem of computing an optimal controller subject to multiple (possibly conflicting) objective properties. The relative importance of objectives is often specified by human decision-makers. However, there is inherent uncertainty in human preferences (e.g., due to different preference elicitation methods). In this paper, we formalize the notion of uncertain human preferences and present a novel approach that accounts for uncertain human preferences in the multi-objective controller synthesis for Markov decision processes (MDPs). Our approach is based on mixed-integer linear programming (MILP) and synthesizes a sound, optimally permissive multi-strategy with respect to a multi-objective property and an uncertain set of human preferences. Experimental results on a range of large case studies show that our MILP-based approach is feasible and scalable to synthesize sound, optimally permissive multi-strategies with varying MDP model sizes and uncertainty levels of human preferences. Evaluation via an online user study also demonstrates the quality and benefits of synthesized (multi-)strategies.
92 - Yu Xue , Yihang Tang , Xin Xu 2021
Feature selection (FS) is an important research topic in machine learning. Usually, FS is modelled as a+ bi-objective optimization problem whose objectives are: 1) classification accuracy; 2) number of features. One of the main issues in real-world a pplications is missing data. Databases with missing data are likely to be unreliable. Thus, FS performed on a data set missing some data is also unreliable. In order to directly control this issue plaguing the field, we propose in this study a novel modelling of FS: we include reliability as the third objective of the problem. In order to address the modified problem, we propose the application of the non-dominated sorting genetic algorithm-III (NSGA-III). We selected six incomplete data sets from the University of California Irvine (UCI) machine learning repository. We used the mean imputation method to deal with the missing data. In the experiments, k-nearest neighbors (K-NN) is used as the classifier to evaluate the feature subsets. Experimental results show that the proposed three-objective model coupled with NSGA-III efficiently addresses the FS problem for the six data sets included in this study.
Real-world decision-making tasks are generally complex, requiring trade-offs between multiple, often conflicting, objectives. Despite this, the majority of research in reinforcement learning and decision-theoretic planning either assumes only a singl e objective, or that multiple objectives can be adequately handled via a simple linear combination. Such approaches may oversimplify the underlying problem and hence produce suboptimal results. This paper serves as a guide to the application of multi-objective methods to difficult problems, and is aimed at researchers who are already familiar with single-objective reinforcement learning and planning methods who wish to adopt a multi-objective perspective on their research, as well as practitioners who encounter multi-objective decision problems in practice. It identifies the factors that may influence the nature of the desired solution, and illustrates by example how these influence the design of multi-objective decision-making systems for complex problems.
Exactly solving multi-objective integer programming (MOIP) problems is often a very time consuming process, especially for large and complex problems. Parallel computing has the potential to significantly reduce the time taken to solve such problems, but only if suitable algorithms are used. The first of our new algorithms follows a simple technique that demonstrates impressive performance for its design. We then go on to introduce new theory for developing more efficient parallel algorithms. The theory utilises elements of the symmetric group to apply a permutation to the objective functions to assign different workloads, and applies to algorithms that order the objective functions lexicographically. As a result, information and updated bounds can be shared in real time, creating a synergy between threads. We design and implement two algorithms that take advantage of such theory. To properly analyse the running time of our three algorithms, we compare them against two existing algorithms from the literature, and against using multiple threads within our chosen IP solver, CPLEX. This survey of six different parallel algorithms, the first of its kind, demonstrates the advantages of parallel computing. Across all problem types tested, our new algorithms are on par with existing algorithms on smaller cases and massively outperform the competition on larger cases. These new algorithms, and freely available implementations, allows the investigation of complex MOIP problems with four or more objectives.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا