ﻻ يوجد ملخص باللغة العربية
The stellar mass-stellar metallicity relation (MZR) is an essential approach to probe the chemical evolution of galaxies. It reflects the balance between galactic feedback and gravitational potential as a function of stellar mass. However, the current MZR of local dwarf satellite galaxies (M* <~ 10^8 Msun, measured from resolved stellar spectroscopy) may not be reconcilable with that of more massive galaxies (M* >~ 10^9.5 Msun, measured from integrated-light spectroscopy). Such a discrepancy may result from a systematic difference between the two methods, or it may indicate a break in the MZR around 10^9 Msun. To address this question, we measured the stellar metallicity of NGC 147 from integrated light using the Palomar Cosmic Web Imager (PCWI). We compared the stellar metallicity estimates from integrated light with the measurements from resolved stellar spectroscopy and found them to be consistent within 0.1 dex. On the other hand, the high-mass MZR overpredicts the metallicity by 0.6 dex at the mass of NGC 147. Therefore, our results tentatively suggest that the discrepancy between the low-mass MZR and high-mass MZR should not be attributed to a systematic difference in techniques. Instead, real physical processes cause the transition in the MZR. In addition, we discovered a positive age gradient in the innermost region and a negative metallicity gradient from the resolved stars at larger radii, suggesting a possible outside-in formation of NGC 147.
We investigate the stellar-mass Tully-Fisher relation (TFR) between the stellar mass and the integrated gas velocity dispersion, quantified by the kinematic estimator S_0.5 measured from strong emission lines in spectra of galaxies at 0<z<5. We combi
Observations and semianalytical galaxy formation and evolution models (SAMs) have suggested the existence of a stellar mass-stellar metallicity relation (MZR), which is shown to be universal for different types of galaxies over a large range of stell
We measure the relationship between stellar mass and stellar metallicity, the stellar mass--metallicity relation (MZR), for 1336 star-forming galaxies at $1.6le zle3.0$ (<z>=2.2) using rest-frame far-ultraviolet spectra from the zCOSMOS-deep survey.
We quantify evolution in the cluster scale stellar mass - halo mass (SMHM) relations parameters using 2323 clusters and brightest central galaxies (BCGs) over the redshift range $0.03 le z le 0.60$. The precision on inferred SMHM parameters is improv
We investigate the nature of the relation among stellar mass, star-formation rate, and gas-phase metallicity (the M$_*$-SFR-Z relation) at high redshifts using a sample of 260 star-forming galaxies at $zsim2.3$ from the MOSDEF survey. We present an a