ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning for Stuttering Identification: Review, Challenges & Future Directions

123   0   0.0 ( 0 )
 نشر من قبل Md Sahidullah
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Stuttering is a speech disorder during which the flow of speech is interrupted by involuntary pauses and repetition of sounds. Stuttering identification is an interesting interdisciplinary domain research problem which involves pathology, psychology, acoustics, and signal processing that makes it hard and complicated to detect. Recent developments in machine and deep learning have dramatically revolutionized speech domain, however minimal attention has been given to stuttering identification. This work fills the gap by trying to bring researchers together from interdisciplinary fields. In this paper, we review comprehensively acoustic features, statistical and deep learning based stuttering/disfluency classification methods. We also present several challenges and possible future directions.



قيم البحث

اقرأ أيضاً

Cloud computing has rapidly emerged as model for delivering Internet-based utility computing services. In cloud computing, Infrastructure as a Service (IaaS) is one of the most important and rapidly growing fields. Cloud providers provide users/machi nes resources such as virtual machines, raw (block) storage, firewalls, load balancers, and network devices in this service model. One of the most important aspects of cloud computing for IaaS is resource management. Scalability, quality of service, optimum utility, reduced overheads, increased throughput, reduced latency, specialised environment, cost effectiveness, and a streamlined interface are some of the advantages of resource management for IaaS in cloud computing. Traditionally, resource management has been done through static policies, which impose certain limitations in various dynamic scenarios, prompting cloud service providers to adopt data-driven, machine-learning-based approaches. Machine learning is being used to handle a variety of resource management tasks, including workload estimation, task scheduling, VM consolidation, resource optimization, and energy optimization, among others. This paper provides a detailed review of challenges in ML-based resource management in current research, as well as current approaches to resolve these challenges, as well as their advantages and limitations. Finally, we propose potential future research directions based on identified challenges and limitations in current research.
The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distr ibuted networks which generate huge amount of data each and every day. The computational power of these devices have also seen steady progression which has created the need to transmit information, store data locally and drive network computations towards edge devices. Intrusion detection systems play a significant role in ensuring security and privacy of such devices. Machine Learning and Deep Learning with Intrusion Detection Systems have gained great momentum due to their achievement of high classification accuracy. However the privacy and security aspects potentially gets jeopardised due to the need of storing and communicating data to centralized server. On the contrary, federated learning (FL) fits in appropriately as a privacy-preserving decentralized learning technique that does not transfer data but trains models locally and transfers the parameters to the centralized server. The present paper aims to present an extensive and exhaustive review on the use of FL in intrusion detection system. In order to establish the need for FL, various types of IDS, relevant ML approaches and its associated issues are discussed. The paper presents detailed overview of the implementation of FL in various aspects of anomaly detection. The allied challenges of FL implementations are also identified which provides idea on the scope of future direction of research. The paper finally presents the plausible solutions associated with the identified challenges in FL based intrusion detection system implementation acting as a baseline for prospective research.
311 - Shulei Ji , Jing Luo , Xinyu Yang 2020
The utilization of deep learning techniques in generating various contents (such as image, text, etc.) has become a trend. Especially music, the topic of this paper, has attracted widespread attention of countless researchers.The whole process of pro ducing music can be divided into three stages, corresponding to the three levels of music generation: score generation produces scores, performance generation adds performance characteristics to the scores, and audio generation converts scores with performance characteristics into audio by assigning timbre or generates music in audio format directly. Previous surveys have explored the network models employed in the field of automatic music generation. However, the development history, the model evolution, as well as the pros and cons of same music generation task have not been clearly illustrated. This paper attempts to provide an overview of various composition tasks under different music generation levels, covering most of the currently popular music generation tasks using deep learning. In addition, we summarize the datasets suitable for diverse tasks, discuss the music representations, the evaluation methods as well as the challenges under different levels, and finally point out several future directions.
We introduce Surfboard, an open-source Python library for extracting audio features with application to the medical domain. Surfboard is written with the aim of addressing pain points of existing libraries and facilitating joint use with modern machi ne learning frameworks. The package can be accessed both programmatically in Python and via its command line interface, allowing it to be easily integrated within machine learning workflows. It builds on state-of-the-art audio analysis packages and offers multiprocessing support for processing large workloads. We review similar frameworks and describe Surfboards architecture, including the clinical motivation for its features. Using the mPower dataset, we illustrate Surfboards application to a Parkinsons disease classification task, highlighting common pitfalls in existing research. The source code is opened up to the research community to facilitate future audio research in the clinical domain.
Wireless systems are vulnerable to various attacks such as jamming and eavesdropping due to the shared and broadcast nature of wireless medium. To support both attack and defense strategies, machine learning (ML) provides automated means to learn fro m and adapt to wireless communication characteristics that are hard to capture by hand-crafted features and models. This article discusses motivation, background, and scope of research efforts that bridge ML and wireless security. Motivated by research directions surveyed in the context of ML for wireless security, ML-based attack and defense solutions and emerging adversarial ML techniques in the wireless domain are identified along with a roadmap to foster research efforts in bridging ML and wireless security.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا