ﻻ يوجد ملخص باللغة العربية
Dense circumstellar material (CSM) is thought to play an important role in observed luminous optical transients: if such CSM is shocked, e.g. by ejecta expelled from the progenitor during core-collapse, then radiation produced by the shock-heated CSM can power bright UV/optical emission. If the initial CSM has an `outer edge where most of the mass is contained and at which the optical depth is large, then shock breakout -- when photons are first able to escape the shocked CSM -- occurs near this outer edge. The $sim$thin shell of shocked CSM subsequently expands, and in the ensuing cooling-envelope phase, radiative and adiabatic losses compete to expend the CSM thermal energy. Here we derive an analytic solution to the bolometric light-curve produced by such shocked CSM. For the first time, we provide a solution to the cooling-envelope phase that is applicable already starting from shock breakout. In particular, we account for the planar CSM geometry that is relevant at early times and impose physically-motivated initial conditions. We show that these effects can dramatically impact the resulting light-curves, particularly if the CSM optical depth is only marginally larger than $c/v_{rm sh}$ (where $v_{rm sh}$ is the shock velocity). This has important implications for interpreting observed fast optical transients, which have previously been modeled using either computationally-expensive numerical simulations or more simplified models that do not properly capture the early light-curve evolution.
The brief transient emitted as a shock wave erupts through the surface of a presupernova star carries information about the stellar radius and explosion energy. Here the CASTRO code, which treats radiation transport using multigroup flux-limited diff
Shock breakout is the brightest radiative phenomenon in a Type II supernova (SN). Although it was predicted to be bright, the direct observation is difficult due to the short duration and X-ray/ultraviolet-peaked spectra. First entire observations of
During the first few days after explosion, Type II supernovae (SNe) are dominated by relatively simple physics. Theoretical predictions regarding early-time SN light curves in the ultraviolet (UV) and optical bands are thus quite robust. We present,
We investigate the properties of X-ray emission from shock breakout of a supernova in a stellar wind. We consider a simple model describing aspherical explosions, in which the shock front with an ellipsoidal shape propagates into the dense circumstel
The mode of explosive burning in Type Ia SNe remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the DDT). We argue that this transition leads to a breakou