ترغب بنشر مسار تعليمي؟ اضغط هنا

The ideal intersection property for essential groupoid C*-algebras

293   0   0.0 ( 0 )
 نشر من قبل Sven Raum
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterise, in several complementary ways, etale groupoids with locally compact Hausdorff space of units whose essential groupoid C*-algebra has the ideal intersection property, assuming that the groupoid is either Hausdorff or $sigma$-compact. This leads directly to a characterisation of the simplicity of this C*-algebra which, for Hausdorff groupoids, agrees with the reduced groupoid C*-algebra. Specifically, we prove that the ideal intersection property is equivalent to the absence of essentially confined amenable sections of isotropy groups. For groupoids with compact space of units we moreover show that is equivalent to the uniqueness of equivariant pseudo-expectations and in the minimal case to an appropriate generalisation of Powers averaging property. A key technical idea underlying our results is a new notion of groupoid action on C*-algebras that includes the essential groupoid C*-algebra itself. By considering a relative version of Powers averaging property, we obtain new examples of C*-irreducible inclusions in the sense of R{o}rdam. These arise from the inclusion of the C*-algebra generated by a suitable group representation into a simple groupoid C*-algebra. This is illustrated by the example of the C*-algebra generated by the quasi-regular representation of Thompsons group T with respect to Thompsons group F, which is contained C*-irreducibly in the Cuntz algebra $mathcal{O}_2$.



قيم البحث

اقرأ أيضاً

From a suitable groupoid G, we show how to construct an amenable principal groupoid whose C*-algebra is a Kirchberg algebra which is KK-equivalent to C*(G). Using this construction, we show by example that many UCT Kirchberg algebras can be realised as the C*-algebras of amenable principal groupoids.
Renault proved in 2008 that if $G$ is a topologically principal groupoid, then $C_0(G^{(0)})$ is a Cartan subalgebra in $C^*_r(G, Sigma)$ for any twist $Sigma$ over $G$. However, there are many groupoids which are not topologically principal, yet the ir (twisted) $C^*$-algebras admit Cartan subalgebras. This paper gives a dynamical description of a class of such Cartan subalgebras, by identifying conditions on a 2-cocycle $c$ on $G$ and a subgroupoid $S subseteq G$ under which $C^*_r(S, c)$ is Cartan in $C^*_r(G, c)$. When $G$ is a discrete group, we also describe the Weyl groupoid and twist associated to these Cartan pairs, under mild additional hypotheses.
I. Raeburn and J. Taylor have constructed continuous-trace C*-algebras with a prescribed Dixmier-Douady class, which also depend on the choice of an open cover of the spectrum. We study the asymptotic behavior of these algebras with respect to certai n refinements of the cover and appropriate extension of cocycles. This leads to the analysis of a limit groupoid G and a cocycle sigma, and the algebra C*(G, sigma) may be regarded as a generalized direct limit of the Raeburn-Taylor algebras. As a special case, all UHF C*-algebras arise from this limit construction.
100 - Yongle Jiang , Adam Skalski 2019
We initiate a study of maximal subgroups and maximal von Neumann subalgebras which have the Haagerup property. We determine maximal Haagerup subgroups inside $mathbb{Z}^2 rtimes SL_2(mathbb{Z})$ and obtain several explicit instances where maximal Haa gerup subgroups yield maximal Haagerup subalgebras. Our techniques are on one hand based on group-theoretic considerations, and on the other on certain results on intermediate von Neumann algebras, in particular these allowing us to deduce that all the intermediate algebras for certain inclusions arise from groups or from group actions. Some remarks and examples concerning maximal non-(T) subgroups and subalgebras are also presented, and we answer two questions of Ge regarding maximal von Neumann subalgebras.
We introduce the Haagerup property for twisted groupoid $C^*$-dynamical systems in terms of naturally defined positive-definite operator-valued multipliers. By developing a version of `the Haagerup trick we prove this property is equivalent to the Ha agerup property of the reduced crossed product $C^*$-algebra with respect to the canonical conditional expectation $E$. This extends a theorem of Dong and Ruan for discrete group actions, and implies that a given Cartan inclusion of separable $C^*$-algebras has the Haagerup property if and only if the associated Weyl groupoid has the Haagerup property in the sense of Tu. We use the latter statement to prove that every separable $C^*$-algebra which has the Haagerup property with respect to some Cartan subalgebra satisfies the Universal Coefficient Theorem. This generalizes a recent result of Barlak and Li on the UCT for nuclear Cartan pairs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا