ﻻ يوجد ملخص باللغة العربية
Solar Energetic Particle events (SEPs) are among the most dangerous transient phenomena of solar activity. As hazardous radiation, SEPs may affect the health of astronauts in outer space and adversely impact current and future space exploration. In this paper, we consider the problem of daily prediction of Solar Proton Events (SPEs) based on the characteristics of the magnetic fields in solar Active Regions (ARs), preceding soft X-ray and proton fluxes, and statistics of solar radio bursts. The machine learning (ML) algorithm uses an artificial neural network of custom architecture designed for whole-Sun input. The predictions of the ML model are compared with the SWPC NOAA operational forecasts of SPEs. Our preliminary results indicate that 1) for the AR-based predictions, it is necessary to take into account ARs at the western limb and on the far side of the Sun; 2) characteristics of the preceding proton flux represent the most valuable input for prediction; 3) daily median characteristics of ARs and the counts of type II, III, and IV radio bursts may be excluded from the forecast without performance loss; and 4) ML-based forecasts outperform SWPC NOAA forecasts in situations in which missing SPE events is very undesirable. The introduced approach indicates the possibility of developing robust all-clear SPE forecasts by employing machine learning methods.
We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 h. Machine learning is used to devise algorithms that can learn from and make decisions on a huge am
The magnetic field plays an essential role in the initiation and evolution of different solar phenomena in the corona. The structure and evolution of the 3D coronal magnetic field are still not very well known. A way to get the 3D structure of the co
Solar flares produce radiation which can have an almost immediate effect on the near-Earth environment, making it crucial to forecast flares in order to mitigate their negative effects. The number of published approaches to flare forecasting using ph
In order to discuss the potential impact of solar superflares on space weather, we investigated statistical relations among energetic proton peak flux with energy higher than $ 10 rm MeV$ ($F_p$), CME speed near the Sun ($V_{CME}$) obtained by {it SO
We introduce a hybrid approach to solar flare prediction, whereby a supervised regularization method is used to realize feature importance and an unsupervised clustering method is used to realize the binary flare/no-flare decision. The approach is validated against NOAA SWPC data.