Braced triangulations and rigidity


الملخص بالإنكليزية

We consider the problem of finding an inductive construction, based on vertex splitting, of triangulated spheres with a fixed number of additional edges (braces). We show that for any positive integer $b$ there is such an inductive construction of triangulations with $b$ braces, having finitely many base graphs. In particular we establish a bound for the maximum size of a base graph with $b$ braces that is linear in $b$. In the case that $b=1$ or $2$ we determine the list of base graphs explicitly. Using these results we show that doubly braced triangulations are (generically) minimally rigid in two distinct geometric contexts arising from a hypercylinder in $mathbb{R}^4$ and a class of mixed norms on $mathbb{R}^3$.

تحميل البحث