ترغب بنشر مسار تعليمي؟ اضغط هنا

Multilingual Speech Evaluation: Case Studies on English, Malay and Tamil

119   0   0.0 ( 0 )
 نشر من قبل Ke Shi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Speech evaluation is an essential component in computer-assisted language learning (CALL). While speech evaluation on English has been popular, automatic speech scoring on low resource languages remains challenging. Work in this area has focused on monolingual specific designs and handcrafted features stemming from resource-rich languages like English. Such approaches are often difficult to generalize to other languages, especially if we also want to consider suprasegmental qualities such as rhythm. In this work, we examine three different languages that possess distinct rhythm patterns: English (stress-timed), Malay (syllable-timed), and Tamil (mora-timed). We exploit robust feature representations inspired by music processing and vector representation learning. Empirical validations show consistent gains for all three languages when predicting pronunciation, rhythm and intonation performance.



قيم البحث

اقرأ أيضاً

In our previous work we demonstrated that a single headed attention encoder-decoder model is able to reach state-of-the-art results in conversational speech recognition. In this paper, we further improve the results for both Switchboard 300 and 2000. Through use of an improved optimizer, speaker vector embeddings, and alternative speech representations we reduce the recognition errors of our LSTM system on Switchboard-300 by 4% relative. Compensation of the decoder model with the probability ratio approach allows more efficient integration of an external language model, and we report 5.9% and 11.5% WER on the SWB and CHM parts of Hub500 with very simple LSTM models. Our study also considers the recently proposed conformer, and more advanced self-attention based language models. Overall, the conformer shows similar performance to the LSTM; nevertheless, their combination and decoding with an improved LM reaches a new record on Switchboard-300, 5.0% and 10.0% WER on SWB and CHM. Our findings are also confirmed on Switchboard-2000, and a new state of the art is reported, practically reaching the limit of the benchmark.
Multilingual acoustic models have been successfully applied to low-resource speech recognition. Most existing works have combined many small corpora together and pretrained a multilingual model by sampling from each corpus uniformly. The model is eve ntually fine-tuned on each target corpus. This approach, however, fails to exploit the relatedness and similarity among corpora in the training set. For example, the target corpus might benefit more from a corpus in the same domain or a corpus from a close language. In this work, we propose a simple but useful sampling strategy to take advantage of this relatedness. We first compute the corpus-level embeddings and estimate the similarity between each corpus. Next, we start training the multilingual model with uniform-sampling from each corpus at first, then we gradually increase the probability to sample from related corpora based on its similarity with the target corpus. Finally, the model would be fine-tuned automatically on the target corpus. Our sampling strategy outperforms the baseline multilingual model on 16 low-resource tasks. Additionally, we demonstrate that our corpus embeddings capture the language and domain information of each corpus.
End-to-end multilingual speech recognition involves using a single model training on a compositional speech corpus including many languages, resulting in a single neural network to handle transcribing different languages. Due to the fact that each la nguage in the training data has different characteristics, the shared network may struggle to optimize for all various languages simultaneously. In this paper we propose a novel multilingual architecture that targets the core operation in neural networks: linear transformation functions. The key idea of the method is to assign fast weight matrices for each language by decomposing each weight matrix into a shared component and a language dependent component. The latter is then factorized into vectors using rank-1 assumptions to reduce the number of parameters per language. This efficient factorization scheme is proved to be effective in two multilingual settings with $7$ and $27$ languages, reducing the word error rates by $26%$ and $27%$ rel. for two popular architectures LSTM and Transformer, respectively.
The use of phonological features (PFs) potentially allows language-specific phones to remain linked in training, which is highly desirable for information sharing for multilingual and crosslingual speech recognition methods for low-resourced language s. A drawback suffered by previous methods in using phonological features is that the acoustic-to-PF extraction in a bottom-up way is itself difficult. In this paper, we propose to join phonology driven phone embedding (top-down) and deep neural network (DNN) based acoustic feature extraction (bottom-up) to calculate phone probabilities. The new method is called JoinAP (Joining of Acoustics and Phonology). Remarkably, no inversion from acoustics to phonological features is required for speech recognition. For each phone in the IPA (International Phonetic Alphabet) table, we encode its phonological features to a phonological-vector, and then apply linear or nonlinear transformation of the phonological-vector to obtain the phone embedding. A series of multilingual and crosslingual (both zero-shot and few-shot) speech recognition experiments are conducted on the CommonVoice dataset (German, French, Spanish and Italian) and the AISHLL-1 dataset (Mandarin), and demonstrate the superiority of JoinAP with nonlinear phone embeddings over both JoinAP with linear phone embeddings and the traditional method with flat phone embeddings.
398 - Yubei Xiao , Ke Gong , Pan Zhou 2020
Low-resource automatic speech recognition (ASR) is challenging, as the low-resource target language data cannot well train an ASR model. To solve this issue, meta-learning formulates ASR for each source language into many small ASR tasks and meta-lea rns a model initialization on all tasks from different source languages to access fast adaptation on unseen target languages. However, for different source languages, the quantity and difficulty vary greatly because of their different data scales and diverse phonological systems, which leads to task-quantity and task-difficulty imbalance issues and thus a failure of multilingual meta-learning ASR (MML-ASR). In this work, we solve this problem by developing a novel adversarial meta sampling (AMS) approach to improve MML-ASR. When sampling tasks in MML-ASR, AMS adaptively determines the task sampling probability for each source language. Specifically, for each source language, if the query loss is large, it means that its tasks are not well sampled to train ASR model in terms of its quantity and difficulty and thus should be sampled more frequently for extra learning. Inspired by this fact, we feed the historical task query loss of all source language domain into a network to learn a task sampling policy for adversarially increasing the current query loss of MML-ASR. Thus, the learnt task sampling policy can master the learning situation of each language and thus predicts good task sampling probability for each language for more effective learning. Finally, experiment results on two multilingual datasets show significant performance improvement when applying our AMS on MML-ASR, and also demonstrate the applicability of AMS to other low-resource speech tasks and transfer learning ASR approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا