ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Many-Body Calculations using Body-Centered Cubic Lattices

308   0   0.0 ( 0 )
 نشر من قبل Young-Ho Song Ph. D.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is often computationally advantageous to model space as a discrete set of points forming a lattice grid. This technique is particularly useful for computationally difficult problems such as quantum many-body systems. For reasons of simplicity and familiarity, nearly all quantum many-body calculations have been performed on simple cubic lattices. Since the removal of lattice artifacts is often an important concern, it would be useful to perform calculations using more than one lattice geometry. In this work we show how to perform quantum many-body calculations using auxiliary-field Monte Carlo simulations on a three-dimensional body-centered cubic (BCC) lattice. As a benchmark test we compute the ground state energy of 33 spin-up and 33 spin-down fermions in the unitary limit, which is an idealized limit where the interaction range is zero and scattering length is infinite. As a fraction of the free Fermi gas energy $E_{rm FG}$, we find that the ground state energy is $E_0/E_{rm FG}= 0.369(2), 0.371(2),$ using two different definitions of the finite-system energy ratio. This is in excellent agreement with recent results obtained on a cubic lattice cite{He:2019ipt}. We find that the computational effort and performance on a BCC lattice is approximately the same as that for a cubic lattice with the same number of lattice points. We discuss how the lattice simulations with different geometries can be used to constrain the size lattice artifacts in simulations of continuum quantum many-body systems.



قيم البحث

اقرأ أيضاً

We review the theory and applications of complex stochastic quantization to the quantum many-body problem. Along the way, we present a brief overview of a number of ideas that either ameliorate or in some cases altogether solve the sign problem, incl uding the classic reweighting method, alternative Hubbard-Stratonovich transformations, dual variables (for bosons and fermions), Majorana fermions, density-of-states methods, imaginary asymmetry approaches, and Lefschetz thimbles. We discuss some aspects of the mathematical underpinnings of conventional stochastic quantization, provide a few pedagogical examples, and summarize open challenges and practical solutions for the complex case. Finally, we review the recent applications of complex Langevin to quantum field theory in relativistic and nonrelativistic quantum matter, with an emphasis on the nonrelativistic case.
The open dynamics of quantum many-body systems involve not only the exchange of energy, but also of other conserved quantities, such as momentum. This leads to additional decoherence, which may have a profound impact in the dynamics. Motivated by thi s, we consider a many-body system subject to total momentum dephasing and show that under very general conditions this leads to a diffusive component in the dynamics of any local density, even far from equilibrium. Such component will usually have an intricate interplay with the unitary dynamics. To illustrate this, we consider the case of a superfluid and show that momentum dephasing introduces a damping in the sound-wave dispersion relation, similar to that predicted by the Navier-Stokes equation for ordinary fluids. Finally, we also study the effects of dephasing in linear response, and show that it leads to a universal additive contribution to the diffusion constant, which can be obtained from a Kubo formula.
We study the properties of transmissivity of a beam of atoms traversing an optical lattices loaded with ultracold atoms. The transmission properties as function of the energy of the incident particles are strongly dependent on the quantum phase of th e atoms in the lattice. In fact, in contrast to the Mott-insulator regime, the absence of an energetic gap in the spectrum of the superfluid phase enables the atoms in the optical lattice to adapt to the presence of the beam. This induces a feedback process that has a strong impact on the transmittivity of the atoms. Based on the corresponding strong dependency we propose the implementation of a speed sensor with and estimated sensitivity of $10^8 - 10^9$m/s/$sqrt{rm Hz}$, which we characterize via the Fisher information. We apply our findings to a bosonic $Li-Rb$ mixture, which is relevant for experiments with ultracold atoms. Applications of the presented scheme are discussed.
In this paper the elementary moves of the BFACF-algorithm for lattice polygons are generalised to elementary moves of BFACF-style algorithms for lattice polygons in the body-centred (BCC) and face-centred (FCC) cubic lattices. We prove that the ergod icity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice. Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
151 - Zhiyuan Yao , Lei Pan , Shang Liu 2021
In this letter, we study the PXP Hamiltonian with an external magnetic field that exhibits both quantum scar states and quantum criticality. It is known that this model hosts a series of quantum many-body scar states violating quantum thermalization at zero magnetic field, and it also exhibits an Ising quantum phase transition driven by finite magnetic field. Although the former involves the properties of generic excited states and the latter concerns the low-energy physics, we discover two surprising connections between them, inspired by the observation that both states possess log-volume law entanglement entropies. First, we show that the quantum many-body scar states can be tracked to a set of quantum critical states, whose nature can be understood as pair-wisely occupied Fermi sea states. Second, we show that the partial violation of quantum thermalization diminishes in the quantum critical regime. We envision that these connections can be extended to general situations and readily verified in existing cold atom experimental platforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا