ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-frame Collaboration for Effective Endoscopic Video Polyp Detection via Spatial-Temporal Feature Transformation

101   0   0.0 ( 0 )
 نشر من قبل Lingyun Wu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Precise localization of polyp is crucial for early cancer screening in gastrointestinal endoscopy. Videos given by endoscopy bring both richer contextual information as well as more challenges than still images. The camera-moving situation, instead of the common camera-fixed-object-moving one, leads to significant background variation between frames. Severe internal artifacts (e.g. water flow in the human body, specular reflection by tissues) can make the quality of adjacent frames vary considerately. These factors hinder a video-based model to effectively aggregate features from neighborhood frames and give better predictions. In this paper, we present Spatial-Temporal Feature Transformation (STFT), a multi-frame collaborative framework to address these issues. Spatially, STFT mitigates inter-frame variations in the camera-moving situation with feature alignment by proposal-guided deformable convolutions. Temporally, STFT proposes a channel-aware attention module to simultaneously estimate the quality and correlation of adjacent frames for adaptive feature aggregation. Empirical studies and superior results demonstrate the effectiveness and stability of our method. For example, STFT improves the still image baseline FCOS by 10.6% and 20.6% on the comprehensive F1-score of the polyp localization task in CVC-Clinic and ASUMayo datasets, respectively, and outperforms the state-of-the-art video-based method by 3.6% and 8.0%, respectively. Code is available at url{https://github.com/lingyunwu14/STFT}.



قيم البحث

اقرأ أيضاً

Deep learning-based methods have achieved promising results on surgical instrument segmentation. However, the high computation cost may limit the application of deep models to time-sensitive tasks such as online surgical video analysis for robotic-as sisted surgery. Moreover, current methods may still suffer from challenging conditions in surgical images such as various lighting conditions and the presence of blood. We propose a novel Multi-frame Feature Aggregation (MFFA) module to aggregate video frame features temporally and spatially in a recurrent mode. By distributing the computation load of deep feature extraction over sequential frames, we can use a lightweight encoder to reduce the computation costs at each time step. Moreover, public surgical videos usually are not labeled frame by frame, so we develop a method that can randomly synthesize a surgical frame sequence from a single labeled frame to assist network training. We demonstrate that our approach achieves superior performance to corresponding deeper segmentation models on two public surgery datasets.
76 - Minghan Li , Shuai Li , Lida Li 2021
Modern one-stage video instance segmentation networks suffer from two limitations. First, convolutional features are neither aligned with anchor boxes nor with ground-truth bounding boxes, reducing the mask sensitivity to spatial location. Second, a video is directly divided into individual frames for frame-level instance segmentation, ignoring the temporal correlation between adjacent frames. To address these issues, we propose a simple yet effective one-stage video instance segmentation framework by spatial calibration and temporal fusion, namely STMask. To ensure spatial feature calibration with ground-truth bounding boxes, we first predict regressed bounding boxes around ground-truth bounding boxes, and extract features from them for frame-level instance segmentation. To further explore temporal correlation among video frames, we aggregate a temporal fusion module to infer instance masks from each frame to its adjacent frames, which helps our framework to handle challenging videos such as motion blur, partial occlusion and unusual object-to-camera poses. Experiments on the YouTube-VIS valid set show that the proposed STMask with ResNet-50/-101 backbone obtains 33.5 % / 36.8 % mask AP, while achieving 28.6 / 23.4 FPS on video instance segmentation. The code is released online https://github.com/MinghanLi/STMask.
158 - Yiming Cui , Liqi Yan , Zhiwen Cao 2021
Video objection detection is a challenging task because isolated video frames may encounter appearance deterioration, which introduces great confusion for detection. One of the popular solutions is to exploit the temporal information and enhance per- frame representation through aggregating features from neighboring frames. Despite achieving improvements in detection, existing methods focus on the selection of higher-level video frames for aggregation rather than modeling lower-level temporal relations to increase the feature representation. To address this limitation, we propose a novel solution named TF-Blender,which includes three modules: 1) Temporal relation mod-els the relations between the current frame and its neighboring frames to preserve spatial information. 2). Feature adjustment enriches the representation of every neigh-boring feature map; 3) Feature blender combines outputs from the first two modules and produces stronger features for the later detection tasks. For its simplicity, TF-Blender can be effortlessly plugged into any detection network to improve detection behavior. Extensive evaluations on ImageNet VID and YouTube-VIS benchmarks indicate the performance guarantees of using TF-Blender on recent state-of-the-art methods.
308 - Fanyi Xiao , Yong Jae Lee 2017
We introduce Spatial-Temporal Memory Networks for video object detection. At its core, a novel Spatial-Temporal Memory module (STMM) serves as the recurrent computation unit to model long-term temporal appearance and motion dynamics. The STMMs design enables full integration of pretrained backbone CNN weights, which we find to be critical for accurate detection. Furthermore, in order to tackle object motion in videos, we propose a novel MatchTrans module to align the spatial-temporal memory from frame to frame. Our method produces state-of-the-art results on the benchmark ImageNet VID dataset, and our ablative studies clearly demonstrate the contribution of our different design choices. We release our code and models at http://fanyix.cs.ucdavis.edu/project/stmn/project.html.
Neural style transfer models have been used to stylize an ordinary video to specific styles. To ensure temporal inconsistency between the frames of the stylized video, a common approach is to estimate the optic flow of the pixels in the original vide o and make the generated pixels match the estimated optical flow. This is achieved by minimizing an optical flow-based (OFB) loss during model training. However, optical flow estimation is itself a challenging task, particularly in complex scenes. In addition, it incurs a high computational cost. We propose a much simpler temporal loss called the frame difference-based (FDB) loss to solve the temporal inconsistency problem. It is defined as the distance between the difference between the stylized frames and the difference between the original frames. The differences between the two frames are measured in both the pixel space and the feature space specified by the convolutional neural networks. A set of human behavior experiments involving 62 subjects with 25,600 votes showed that the performance of the proposed FDB loss matched that of the OFB loss. The performance was measured by subjective evaluation of stability and stylization quality of the generated videos on two typical video stylization models. The results suggest that the proposed FDB loss is a strong alternative to the commonly used OFB loss for video stylization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا