ترغب بنشر مسار تعليمي؟ اضغط هنا

CLAIM: Curriculum Learning Policy for Influence Maximization in Unknown Social Networks

77   0   0.0 ( 0 )
 نشر من قبل Dexun Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Influence maximization is the problem of finding a small subset of nodes in a network that can maximize the diffusion of information. Recently, it has also found application in HIV prevention, substance abuse prevention, micro-finance adoption, etc., where the goal is to identify the set of peer leaders in a real-world physical social network who can disseminate information to a large group of people. Unlike online social networks, real-world networks are not completely known, and collecting information about the network is costly as it involves surveying multiple people. In this paper, we focus on this problem of network discovery for influence maximization. The existing work in this direction proposes a reinforcement learning framework. As the environment interactions in real-world settings are costly, so it is important for the reinforcement learning algorithms to have minimum possible environment interactions, i.e, to be sample efficient. In this work, we propose CLAIM - Curriculum LeArning Policy for Influence Maximization to improve the sample efficiency of RL methods. We conduct experiments on real-world datasets and show that our approach can outperform the current best approach.



قيم البحث

اقرأ أيضاً

Influence maximization is the task of finding the smallest set of nodes whose activation in a social network can trigger an activation cascade that reaches the targeted network coverage, where threshold rules determine the outcome of influence. This problem is NP-hard and it has generated a significant amount of recent research on finding efficient heuristics. We focus on a {it Balance Index} algorithm that relies on three parameters to tune its performance to the given network structure. We propose using a supervised machine-learning approach for such tuning. We select the most influential graph features for the parameter tuning. Then, using random-walk-based graph-sampling, we create small snapshots from the given synthetic and large-scale real-world networks. Using exhaustive search, we find for these snapshots the high accuracy values of BI parameters to use as a ground truth. Then, we train our machine-learning model on the snapshots and apply this model to the real-word network to find the best BI parameters. We apply these parameters to the sampled real-world network to measure the quality of the sets of initiators found this way. We use various real-world networks to validate our approach against other heuristic.
153 - Yixin Bao , Xiaoke Wang , Zhi Wang 2016
Social networks have been popular platforms for information propagation. An important use case is viral marketing: given a promotion budget, an advertiser can choose some influential users as the seed set and provide them free or discounted sample pr oducts; in this way, the advertiser hopes to increase the popularity of the product in the users friend circles by the world-of-mouth effect, and thus maximizes the number of users that information of the production can reach. There has been a body of literature studying the influence maximization problem. Nevertheless, the existing studies mostly investigate the problem on a one-off basis, assuming fixed known influence probabilities among users, or the knowledge of the exact social network topology. In practice, the social network topology and the influence probabilities are typically unknown to the advertiser, which can be varying over time, i.e., in cases of newly established, strengthened or weakened social ties. In this paper, we focus on a dynamic non-stationary social network and design a randomized algorithm, RSB, based on multi-armed bandit optimization, to maximize influence propagation over time. The algorithm produces a sequence of online decisions and calibrates its explore-exploit strategy utilizing outcomes of previous decisions. It is rigorously proven to achieve an upper-bounded regret in reward and applicable to large-scale social networks. Practical effectiveness of the algorithm is evaluated using both synthetic and real-world datasets, which demonstrates that our algorithm outperforms previous stationary methods under non-stationary conditions.
In this Letter, we empirically study the influence of reciprocal links, in order to understand its role in affecting the structure and function of directed social networks. Experimental results on two representative datesets, Sina Weibo and Douban, d emonstrate that the reciprocal links indeed play a more important role than non-reciprocal ones in both spreading information and maintaining the network robustness. In particular, the information spreading process can be significantly enhanced by considering the reciprocal effect. In addition, reciprocal links are largely responsible for the connectivity and efficiency of directed networks. This work may shed some light on the in-depth understanding and application of the reciprocal effect in directed online social networks.
In the present day, more than 3.8 billion people around the world actively use social media. The effectiveness of social media in facilitating quick and easy sharing of information has attracted brands and advertizers who wish to use the platform to market products via the influencers in the network. Influencers, owing to their massive popularity, provide a huge potential customer base generating higher returns of investment in a very short period. However, it is not straightforward to decide which influencers should be selected for an advertizing campaign that can generate maximum returns with minimum investment. In this work, we present an agent-based model (ABM) that can simulate the dynamics of influencer advertizing campaigns in a variety of scenarios and can help to discover the best influencer marketing strategy. Our system is a probabilistic graph-based model that incorporates real-world factors such as customers interest in a product, customer behavior, the willingness to pay, a brands investment cap, influencers engagement with influence diffusion, and the nature of the product being advertized viz. luxury and non-luxury.
102 - Chen Feng , Luoyi Fu , Bo Jiang 2020
Influence maximization (IM) aims at maximizing the spread of influence by offering discounts to influential users (called seeding). In many applications, due to users privacy concern, overwhelming network scale etc., it is hard to target any user in the network as one wishes. Instead, only a small subset of users is initially accessible. Such access limitation would significantly impair the influence spread, since IM often relies on seeding high degree users, which are particularly rare in such a small subset due to the power-law structure of social networks. In this paper, we attempt to solve the limited IM in real-world scenarios by the adaptive approach with seeding and diffusion uncertainty considered. Specifically, we consider fine-grained discounts and assume users accept the discount probabilistically. The diffusion process is depicted by the independent cascade model. To overcome the access limitation, we prove the set-wise friendship paradox (FP) phenomenon that neighbors have higher degree in expectation, and propose a two-stage seeding model with the FP embedded, where neighbors are seeded. On this basis, for comparison we formulate the non-adaptive case and adaptive case, both proven to be NP-hard. In the non-adaptive case, discounts are allocated to users all at once. We show the monotonicity of influence spread w.r.t. discount allocation and design a two-stage coordinate descent framework to decide the discount allocation. In the adaptive case, users are sequentially seeded based on observations of existing seeding and diffusion results. We prove the adaptive submodularity and submodularity of the influence spread function in two stages. Then, a series of adaptive greedy algorithms are proposed with constant approximation ratio.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا