ترغب بنشر مسار تعليمي؟ اضغط هنا

An algorithmic view of $ell_2$ regularization and some path-following algorithms

166   0   0.0 ( 0 )
 نشر من قبل Yunzhang Zhu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish an equivalence between the $ell_2$-regularized solution path for a convex loss function, and the solution of an ordinary differentiable equation (ODE). Importantly, this equivalence reveals that the solution path can be viewed as the flow of a hybrid of gradient descent and Newton method applying to the empirical loss, which is similar to a widely used optimization technique called trust region method. This provides an interesting algorithmic view of $ell_2$ regularization, and is in contrast to the conventional view that the $ell_2$ regularization solution path is similar to the gradient flow of the empirical loss.New path-following algorithms based on homotopy methods and numerical ODE solvers are proposed to numerically approximate the solution path. In particular, we consider respectively Newton method and gradient descent method as the basis algorithm for the homotopy method, and establish their approximation error rates over the solution path. Importantly, our theory suggests novel schemes to choose grid points that guarantee an arbitrarily small suboptimality for the solution path. In terms of computational cost, we prove that in order to achieve an $epsilon$-suboptimality for the entire solution path, the number of Newton steps required for the Newton method is $mathcal O(epsilon^{-1/2})$, while the number of gradient steps required for the gradient descent method is $mathcal Oleft(epsilon^{-1} ln(epsilon^{-1})right)$. Finally, we use $ell_2$-regularized logistic regression as an illustrating example to demonstrate the effectiveness of the proposed path-following algorithms.



قيم البحث

اقرأ أيضاً

We propose a penalized likelihood framework for estimating multiple precision matrices from different classes. Most existing methods either incorporate no information on relationships between the precision matrices, or require this information be kno wn a priori. The framework proposed in this article allows for simultaneous estimation of the precision matrices and relationships between the precision matrices, jointly. Sparse and non-sparse estimators are proposed, both of which require solving a non-convex optimization problem. To compute our proposed estimators, we use an iterative algorithm which alternates between a convex optimization problem solved by blockwise coordinate descent and a k-means clustering problem. Blockwise updates for computing the sparse estimator require solving an elastic net penalized precision matrix estimation problem, which we solve using a proximal gradient descent algorithm. We prove that this subalgorithm has a linear rate of convergence. In simulation studies and two real data applications, we show that our method can outperform competitors that ignore relevant relationships between precision matrices and performs similarly to methods which use prior information often uknown in practice.
We report on the potential for using algorithms for non-negative matrix factorization (NMF) to improve parameter estimation in topic models. While several papers have studied connections between NMF and topic models, none have suggested leveraging th ese connections to develop new algorithms for fitting topic models. Importantly, NMF avoids the sum-to-one constraints on the topic model parameters, resulting in an optimization problem with simpler structure and more efficient computations. Building on recent advances in optimization algorithms for NMF, we show that first solving the NMF problem then recovering the topic model fit can produce remarkably better fits, and in less time, than standard algorithms for topic models. While we focus primarily on maximum likelihood estimation, we show that this approach also has the potential to improve variational inference for topic models. Our methods are implemented in the R package fastTopics.
128 - Yujie Zhao , Xiaoming Huo 2020
In optimization, it is known that when the objective functions are strictly convex and well-conditioned, gradient based approaches can be extremely effective, e.g., achieving the exponential rate in convergence. On the other hand, the existing Lasso- type of estimator in general cannot achieve the optimal rate due to the undesirable behavior of the absolute function at the origin. A homotopic method is to use a sequence of surrogate functions to approximate the $ell_1$ penalty that is used in the Lasso-type of estimators. The surrogate functions will converge to the $ell_1$ penalty in the Lasso estimator. At the same time, each surrogate function is strictly convex, which enables provable faster numerical rate of convergence. In this paper, we demonstrate that by meticulously defining the surrogate functions, one can prove faster numerical convergence rate than any existing methods in computing for the Lasso-type of estimators. Namely, the state-of-the-art algorithms can only guarantee $O(1/epsilon)$ or $O(1/sqrt{epsilon})$ convergence rates, while we can prove an $O([log(1/epsilon)]^2)$ for the newly proposed algorithm. Our numerical simulations show that the new algorithm also performs better empirically.
66 - Dominik Janzing 2019
I argue that regularizing terms in standard regression methods not only help against overfitting finite data, but sometimes also yield better causal models in the infinite sample regime. I first consider a multi-dimensional variable linearly influenc ing a target variable with some multi-dimensional unobserved common cause, where the confounding effect can be decreased by keeping the penalizing term in Ridge and Lasso regression even in the population limit. Choosing the size of the penalizing term, is however challenging, because cross validation is pointless. Here it is done by first estimating the strength of confounding via a method proposed earlier, which yielded some reasonable results for simulated and real data. Further, I prove a `causal generalization bound which states (subject to a particular model of confounding) that the error made by interpreting any non-linear regression as causal model can be bounded from above whenever functions are taken from a not too rich class. In other words, the bound guarantees generalization from observational to interventional distributions, which is usually not subject of statistical learning theory (and is only possible due to the underlying symmetries of the confounder model).
Neural networks have excelled at regression and classification problems when the input space consists of scalar variables. As a result of this proficiency, several popular packages have been developed that allow users to easily fit these kinds of mod els. However, the methodology has excluded the use of functional covariates and to date, there exists no software that allows users to build deep learning models with this generalized input space. To the best of our knowledge, the functional neural network (FuncNN) library is the first such package in any programming language; the library has been developed for R and is built on top of the keras architecture. Throughout this paper, several functions are introduced that provide users an avenue to easily build models, generate predictions, and run cross-validations. A summary of the underlying methodology is also presented. The ultimate contribution is a package that provides a set of general modelling and diagnostic tools for data problems in which there exist both functional and scalar covariates.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا