ترغب بنشر مسار تعليمي؟ اضغط هنا

Attribute reduction and rule acquisition of formal decision context based on two new kinds of decision rules

149   0   0.0 ( 0 )
 نشر من قبل Qian Hu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper mainly studies the rule acquisition and attribute reduction for formal decision context based on two new kinds of decision rules, namely I-decision rules and II-decision rules. The premises of these rules are object-oriented concepts, and the conclusions are formal concept and property-oriented concept respectively. The rule acquisition algorithms for I-decision rules and II-decision rules are presented. Some comparative analysis of these algorithms with the existing algorithms are examined which shows that the algorithms presented in this study behave well. The attribute reduction approaches to preserve I-decision rules and II-decision rules are presented by using discernibility matrix.



قيم البحث

اقرأ أيضاً

The recent years have witnessed the rise of accurate but obscure decision systems which hide the logic of their internal decision processes to the users. The lack of explanations for the decisions of black box systems is a key ethical issue, and a li mitation to the adoption of machine learning components in socially sensitive and safety-critical contexts. %Therefore, we need explanations that reveals the reasons why a predictor takes a certain decision. In this paper we focus on the problem of black box outcome explanation, i.e., explaining the reasons of the decision taken on a specific instance. We propose LORE, an agnostic method able to provide interpretable and faithful explanations. LORE first leans a local interpretable predictor on a synthetic neighborhood generated by a genetic algorithm. Then it derives from the logic of the local interpretable predictor a meaningful explanation consisting of: a decision rule, which explains the reasons of the decision; and a set of counterfactual rules, suggesting the changes in the instances features that lead to a different outcome. Wide experiments show that LORE outperforms existing methods and baselines both in the quality of explanations and in the accuracy in mimicking the black box.
Considering the high heterogeneity of the ontologies pub-lished on the web, ontology matching is a crucial issue whose aim is to establish links between an entity of a source ontology and one or several entities from a target ontology. Perfectible si milarity measures, consid-ered as sources of information, are combined to establish these links. The theory of belief functions is a powerful mathematical tool for combining such uncertain information. In this paper, we introduce a decision pro-cess based on a distance measure to identify the best possible matching entities for a given source entity.
215 - Arnaud Martin 2008
In this chapter, we present and discuss a new generalized proportional conflict redistribution rule. The Dezert-Smarandache extension of the Demster-Shafer theory has relaunched the studies on the combination rules especially for the management of th e conflict. Many combination rules have been proposed in the last few years. We study here different combination rules and compare them in terms of decision on didactic example and on generated data. Indeed, in real applications, we need a reliable decision and it is the final results that matter. This chapter shows that a fine proportional conflict redistribution rule must be preferred for the combination in the belief function theory.
Detection rules have traditionally been designed for rational agents that minimize the Bayes risk (average decision cost). With the advent of crowd-sensing systems, there is a need to redesign binary hypothesis testing rules for behavioral agents, wh ose cognitive behavior is not captured by traditional utility functions such as Bayes risk. In this paper, we adopt prospect theory based models for decision makers. We consider special agent models namely optimists and pessimists in this paper, and derive optimal detection rules under different scenarios. Using an illustrative example, we also show how the decision rule of a human agent deviates from the Bayesian decision rule under various behavioral models, considered in this paper.
This paper proposes a novel intrusion detection system (IDS) that combines different classifier approaches which are based on decision tree and rules-based concepts, namely, REP Tree, JRip algorithm and Forest PA. Specifically, the first and second m ethod take as inputs features of the data set, and classify the network traffic as Attack/Benign. The third classifier uses features of the initial data set in addition to the outputs of the first and the second classifier as inputs. The experimental results obtained by analyzing the proposed IDS using the CICIDS2017 dataset, attest their superiority in terms of accuracy, detection rate, false alarm rate and time overhead as compared to state of the art existing schemes.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا