ﻻ يوجد ملخص باللغة العربية
A fundamental question in adversarial machine learning is whether a robust classifier exists for a given task. A line of research has made progress towards this goal by studying concentration of measure, but without considering data labels. We argue that the standard concentration fails to fully characterize the intrinsic robustness of a classification problem, since it ignores data labels which are essential to any classification task. Building on a novel definition of label uncertainty, we empirically demonstrate that error regions induced by state-of-the-art models tend to have much higher label uncertainty compared with randomly-selected subsets. This observation motivates us to adapt a concentration estimation algorithm to account for label uncertainty, resulting in more accurate intrinsic robustness measures for benchmark image classification problems. We further provide empirical evidence showing that adding an abstain option for classifiers based on label uncertainty can help improve both the clean and robust accuracies of models.
Adversarial examples are delicately perturbed inputs, which aim to mislead machine learning models towards incorrect outputs. While most of the existing work focuses on generating adversarial perturbations in multi-class classification problems, many
Deep networks are well-known to be fragile to adversarial attacks. We conduct an empirical analysis of deep representations under the state-of-the-art attack method called PGD, and find that the attack causes the internal representation to shift clos
Recent breakthroughs in the field of deep learning have led to advancements in a broad spectrum of tasks in computer vision, audio processing, natural language processing and other areas. In most instances where these tasks are deployed in real-world
Despite the remarkable success of deep neural networks, significant concerns have emerged about their robustness to adversarial perturbations to inputs. While most attacks aim to ensure that these are imperceptible, physical perturbation attacks typi
We focus on the use of proxy distributions, i.e., approximations of the underlying distribution of the training dataset, in both understanding and improving the adversarial robustness in image classification. While additional training data helps in a