ﻻ يوجد ملخص باللغة العربية
The Hospitals/Residents problem (HR) is a many-to-one matching problem whose solution concept is stability. It is widely used in assignment systems such as assigning medical students (residents) to hospitals. To resolve imbalance in the number of residents assigned to hospitals, an extension called HR with regional caps (HRRC) was introduced. In this problem, a positive integer (called a regional cap) is associated with a subset of hospitals (called a region), and the total number of residents assigned to hospitals in a region must be at most its regional cap. Kamada and Kojima defined strong stability for HRRC and demonstrated that a strongly stable matching does not necessarily exist. Recently, Aziz et al. proved that the problem of determining if a strongly stable matching exists is NP-complete in general. In this paper, we refine Aziz et al.s result by investigating the computational complexity of the problem in terms of the length of preference lists, the size of regions, and whether or not regions can overlap, and completely classify tractable and intractable cases.
Consider an online facility assignment problem where a set of facilities $F = { f_1, f_2, f_3, cdots, f_{|F|} }$ of equal capacity $l$ is situated on a metric space and customers arrive one by one in an online manner on that space. We assign a custom
Redistricting is the problem of dividing a state into a number $k$ of regions, called districts. Voters in each district elect a representative. The primary criteria are: each district is connected, district populations are equal (or nearly equal), a
Many algorithms for maximizing a monotone submodular function subject to a knapsack constraint rely on the natural greedy heuristic. We present a novel refined analysis of this greedy heuristic which enables us to: $(1)$ reduce the enumeration in the
An enumeration kernel as defined by Creignou et al. [Theory Comput. Syst. 2017] for a parameterized enumeration problem consists of an algorithm that transforms each instance into one whose size is bounded by the parameter plus a solution-lifting alg
We provide online algorithms for secretary matching in general weighted graphs, under the well-studied models of vertex and edge arrivals. In both models, edges are associated with arbitrary weights that are unknown from the outset, and are revealed