ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural and WAL analysis of Topological single-crystal SnSb2Te4

122   0   0.0 ( 0 )
 نشر من قبل Veer Awana Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here, we report successful single crystal growth of SnSb2Te4 using the self-flux method. Unidirectional crystal growth is confirmed through X Ray Diffraction (XRD) pattern taken on mechanically cleaved crystal flake while the rietveld refined Powder XRD (PXRD) pattern confirms the phase purity of the grown crystal. Scanning Electron Microscopy (SEM) image and Energy Dispersive X-Ray analysis (EDAX) confirm crystalline morphology and exact stoichiometry of constituent elements. Vibrational Modes observed in Raman spectra also confirm the formation of the SnSb2Te4 phase. DC resistivity measurements confirm the metallic character of the grown crystal. Magneto-transport measurements up to 5T show a nonsaturating low magneto-resistance percentage. V type cusp and Hikami Larkin Nagaoka (HLN) fitting at lower field confirms the Weak Anti-localization (WAL) effect in SnSb2Te4. Density Functional Theory (DFT) calculations were showing topological non-trivial electronic band structure. It is the first-ever report on MR study and WAL analysis of SnSb2Te4 single crystal.



قيم البحث

اقرأ أيضاً

Here, we report the growth and characterization of single crystals of NdxSb2-xTe3, by solid state reaction route via self-flux method. The phase and layered growth are confirmed through x-ray diffraction and Scanning electron microscopy respectively. A slight contraction in lattice parameters is seen after Nd doping. Also a minute shift in vibrational modes of recorded Raman spectra has been observed by doping of Nd in Sb2Te3. The magneto-resistance values under magnetic field of 5Tesla for Sb2Te3 are 75 percent at 2.5K and 60 percent at 20K, but only 40 percent at 5K for Nd0.1Sb1.9Te3. DC magnetic measurements exhibit expected diamagnetic and paramagnetic behaviors for pure and Nd doped crystals respectively. A cusp-like behavior is observed in magneto conductivity of both pure and Nd doped crystals at low magnetic fields below 1 Tesla which is analyzed using Hikami Larkin Nagaoka (HLN) model. For Sb2Te3 the fitted parameters alpha values are -1.02 and -0.58 and the phase coherence lengths are 50.8(6)nm & 34.9(8)nm at temperatures 2.5K and 20K respectively. For Nd0.1Sb1.9Te3, alpha is -0.29 and coherence length is 27.2(1) nm at 5K. The {alpha} values clearly show the presence of weak anti localization effect in both, pure and Nd doped samples. Also with Nd doping, the contribution of bulk states increases in addition to conducting surface states in overall conduction mechanism.
207 - D. Reznik , I. Ahmadova 2020
This article introduces software called Phonon Explorer that implements a data mining workflow for large datasets of the neutron scattering function, S(Q, {omega}), measured on time-of-flight neutron spectrometers. This systematic approach takes adva ntage of all useful data contained in the dataset. It includes finding Brillouin zones where specific phonons have the highest scattering intensity, background subtraction, combining statistics in multiple Brillouin zones, and separating closely spaced phonon peaks. Using the software reduces the time needed to determine phonon dispersions, linewidths, and eigenvectors by more than an order of magnitude.
Here, we report the magneto-conductivity (up to 14Tesla and down to 5K) analysis of Bi2Te3 single-crystal. A sharp magneto-conductivity (MC) rise (inverted v-type cusp) is observed near H=0 due to the weak antilocalization (WAL) effect, while a linea r curve is observed at higher fields. We account for magneto-conductivity (MC) over the entire range of applied magnetic fields of up to 14Tesla and temperatures from 100K to 5K in a modified HLN modelling (addition of quadratic (BH2) through quantum and classical components involvement. The additional term BH2 reveals a gradual change of a (HLN parameter) from -0.421(6) to -0.216(1) as the temperature increases from 5 to 100K. The phase coherence length Lphi obtained from both conventional and modified modelling decreased with increasing temperature but remains more protracted than the mean free path (L) of electrons. It shows the quantum phase coherence effect dominates at high temperature.
Ca2Co2O5 in the brownmillerite form was synthesized using a high-pressure optical-image floating zone furnace, and single crystals with dimensions up to 1.4x0.8x0.5 mm3 were obtained. At room temperature, Ca2Co2O5 crystallizes as a fully ordered brow nmillerite variant in the orthorhombic space group Pcmb (No. 57) with unit cell parameters a=5.28960(10) {AA}, b=14.9240(2) {AA}, and c=10.9547(2) {AA}. With decreasing temperature, it undergoes a re-entrant sequence of first-order structural phase transitions (Pcmb to P2/c11 to P121/m1 to Pcmb) that is unprecedented among brownmillerites, broadening the family of space groups available to these materials and challenging current approaches for sorting the myriad variants of brownmillerite structures. Magnetic susceptibility data indicate antiferromagnetic ordering in Ca2Co2O5 occurs near 240 K, corroborated by neutron powder diffraction. Below 140 K, the specimen exhibits a weak ferromagnetic component directed primarily along the b axis that shows a pronounced thermal and magnetic history dependence.
While structure refinement is routinely achieved for simple bulk materials, the accurate structural determination still poses challenges for thin films due on the one hand to the small amount of material deposited on the thicker substrate and, on the other hand, to the intricate epitaxial relationships that substantially complicate standard X-ray diffraction analysis. Using a combined approach, we analyze the crystal structure of epitaxial LaVO$_3$ thin films grown on (100)-oriented SrTiO$_3$. Transmission electron microscopy study reveals that the thin films are epitaxially grown on SrTiO$_3$ and points to the presence of 90$^{circ}$ oriented domains. The mapping of the reciprocal space obtained by high resolution X-ray diffraction permits refinement of the lattice parameters. We finally deduce that strain accommodation imposes a monoclinic structure onto the LaVO$_3$ film. The reciprocal space maps are numerically processed and the extracted data computed to refine the atomic positions, which are compared to those obtained using precession electron diffraction tomography. We discuss the obtained results and our methodological approach as a promising thin film structure determination for complex systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا