ترغب بنشر مسار تعليمي؟ اضغط هنا

Deep Extrapolation for Attribute-Enhanced Generation

75   0   0.0 ( 0 )
 نشر من قبل Ali Madani
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Attribute extrapolation in sample generation is challenging for deep neural networks operating beyond the training distribution. We formulate a new task for extrapolation in sequence generation, focusing on natural language and proteins, and propose GENhance, a generative framework that enhances attributes through a learned latent space. Trained on movie reviews and a computed protein stability dataset, GENhance can generate strongly-positive text reviews and highly stable protein sequences without being exposed to similar data during training. We release our benchmark tasks and models to contribute to the study of generative modeling extrapolation and data-driven design in biology and chemistry.



قيم البحث

اقرأ أيضاً

Generating paraphrases that are lexically similar but semantically different is a challenging task. Paraphrases of this form can be used to augment data sets for various NLP tasks such as machine reading comprehension and question answering with non- trivial negative examples. In this article, we propose a deep variational model to generate paraphrases conditioned on a label that specifies whether the paraphrases are semantically related or not. We also present new training recipes and KL regularization techniques that improve the performance of variational paraphrasing models. Our proposed model demonstrates promising results in enhancing the generative power of the model by employing label-dependent generation on paraphrasing datasets.
There has been a steady need to precisely extract structured knowledge from the web (i.e. HTML documents). Given a web page, extracting a structured object along with various attributes of interest (e.g. price, publisher, author, and genre for a book ) can facilitate a variety of downstream applications such as large-scale knowledge base construction, e-commerce product search, and personalized recommendation. Considering each web page is rendered from an HTML DOM tree, existing approaches formulate the problem as a DOM tree node tagging task. However, they either rely on computationally expensive visual feature engineering or are incapable of modeling the relationship among the tree nodes. In this paper, we propose a novel transferable method, Simplified DOM Trees for Attribute Extraction (SimpDOM), to tackle the problem by efficiently retrieving useful context for each node by leveraging the tree structure. We study two challenging experimental settings: (i) intra-vertical few-shot extraction, and (ii) cross-vertical fewshot extraction with out-of-domain knowledge, to evaluate our approach. Extensive experiments on the SWDE public dataset show that SimpDOM outperforms the state-of-the-art (SOTA) method by 1.44% on the F1 score. We also find that utilizing knowledge from a different vertical (cross-vertical extraction) is surprisingly useful and helps beat the SOTA by a further 1.37%.
189 - Zhilin Yang , Ye Yuan , Yuexin Wu 2016
We propose a novel extension of the encoder-decoder framework, called a review network. The review network is generic and can enhance any existing encoder- decoder model: in this paper, we consider RNN decoders with both CNN and RNN encoders. The rev iew network performs a number of review steps with attention mechanism on the encoder hidden states, and outputs a thought vector after each review step; the thought vectors are used as the input of the attention mechanism in the decoder. We show that conventional encoder-decoders are a special case of our framework. Empirically, we show that our framework improves over state-of- the-art encoder-decoder systems on the tasks of image captioning and source code captioning.
Many mobile applications and virtual conversational agents now aim to recognize and adapt to emotions. To enable this, data are transmitted from users devices and stored on central servers. Yet, these data contain sensitive information that could be used by mobile applications without users consent or, maliciously, by an eavesdropping adversary. In this work, we show how multimodal representations trained for a primary task, here emotion recognition, can unintentionally leak demographic information, which could override a selected opt-out option by the user. We analyze how this leakage differs in representations obtained from textual, acoustic, and multimodal data. We use an adversarial learning paradigm to unlearn the private information present in a representation and investigate the effect of varying the strength of the adversarial component on the primary task and on the privacy metric, defined here as the inability of an attacker to predict specific demographic information. We evaluate this paradigm on multiple datasets and show that we can improve the privacy metric while not significantly impacting the performance on the primary task. To the best of our knowledge, this is the first work to analyze how the privacy metric differs across modalities and how multiple privacy concerns can be tackled while still maintaining performance on emotion recognition.
By combining various cancer cell line (CCL) drug screening panels, the size of the data has grown significantly to begin understanding how advances in deep learning can advance drug response predictions. In this paper we train >35,000 neural network models, sweeping over common featurization techniques. We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features. We found the inclusion of single nucleotide polymorphisms (SNPs) coded as count matrices improved model performance significantly, and no substantial difference in model performance with respect to molecular featurization between the common open source MOrdred descriptors and Dragon7 descriptors. Alongside this analysis, we outline data integration between CCL screening datasets and present evidence that new metrics and imbalanced data techniques, as well as advances in data standardization, need to be developed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا