ﻻ يوجد ملخص باللغة العربية
We present a study of the detection and recovery efficiency of the Rubin Observatory for detached eclipsing binaries (EBs) in the galactic field, globular clusters (GCs) and open clusters (OCs), with a focus on comparing two proposed observing strategies: a standard cadence (baseline), and a cadence which samples the galactic plane more evenly (colossus). We generate realistic input binary populations in all observing fields of the Rubin Observatory, simulate the expected observations in each filter, and attempt to characterize the EBs using these simulated observations. In our models, we predict the baseline cadence will enable the Rubin Observatory to observe about three million EBs; our technique could recover and characterize nearly one million of these in the field and thousands within star clusters. If the colossus cadence is used, the number of recovered EBs would increase by an overall factor of about 1.7 in the field and in globular clusters, and a factor of about three in open clusters. Including semi-detached and contact systems could increase the number of recovered EBs by an additional factor of about 2.5 to 3. Regardless of the cadence, observations from the Rubin Observatory could reveal statistically significant physical distinctions between the distributions of EB orbital elements between the field, GCs and OCs. Simulations such as these can be used to bias correct the sample of Rubin Observatory EBs to study the intrinsic properties of the full binary populations in the field and star clusters.
We present observations of a region of the Galactic plane taken during the Early Science Program of the Australian Square Kilometre Array Pathfinder (ASKAP). In this context, we observed the SCORPIO field at 912 MHz with an uncompleted array consisti
High-precision proper motions of the globular cluster 47 Tuc have allowed us to measure for the first time the cluster rotation in the plane of the sky and the velocity anisotropy profile from the cluster core out to about 13. These profiles are coup
We present a new study of late-type eclipsing binary stars in the Small Magellanic Cloud (SMC) undertaken with the aim of improving the distance determination to this important galaxy. A sample of 10 new detached, double-lined eclipsing binaries inde
The so-called S2 star reached its closest approach to the massive black hole (BH) at around 1500 $R_mathrm{s}$ in May 2018. It has been proposed that the interaction of its stellar wind with the high-density accretion flow at this distance from Sgr A
Using deep photometric data from WFC@INT and
[email protected] we measure the outer number density profiles of 19 stellar clusters located in the inner region of the Milky Way halo (within a Galactocentric distance range of 10-30 kpc) in order to assess th